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Unstable repeats are associated with various types of cancer and have been implicated in more than 40 neurode-
generative disorders. Trinucleotide repeats are located in non-coding and coding regions of the genome. Studies of 
bacteria, yeast, mice and man have helped to unravel some features of the mechanism of trinucleotide expansion. 
Looped DNA structures comprising trinucleotide repeats are processed during replication and/or repair to generate 
deletions or expansions. Most in vivo data are consistent with a model in which expansion and deletion occur by differ-
ent mechanisms. In mammals, microsatellite instability is complex and appears to be influenced by genetic, epigenetic 
and developmental factors.
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Introduction

Microsatellites are generally defined as simple sequences 
of 1-6 nucleotides that are repeated multiple times and 
are present in both coding and non-coding regions of the 
genome. Repetitive sequences are well represented in the 
eukaryotic genome [1-7] and have been reported to be 
hot spots for recombination as well as sites for random 
integration [8-10]. Thus, alterations in simple repetitive 
sequences lie at the center of DNA evolution and sequence 
diversity that drives adaptation. On the other hand, changes 
in repetitive sequences can result in deleterious effects on 
gene expression and function, leading to disease. Simple tri-
nucleotide repeats (TNR) have taken on special significance 
in this regard since genomic amplification of TNR is the 
underlying genetic defect in a number of human diseases 
including neurodegenerative and neuromuscular diseases 
and mental retardation [11]. Potential mechanisms for 
TNR expansion have been extensively reviewed in the last 
two years [11, 12]. Therefore, in this review, we focus on 
interpreting the likelihood of the proposed mechanisms in 
consideration of general features of genome dynamics from 
different species. The features of microsatellite instability 
observed in bacteria, yeast, mice, and man can define the 

magnitude and direction of changes expected at TNRs and 
provide general clues as to how genomes evolve and how 
certain instability could contribute to human disease. 

Incidence and significance of microsatellites

Repetitive sequences constitute 30% of the human ge-
nome, and are often sites of deletions and insertions [1-7]. 
The incidence of repetitive elements is much higher than 
that of random sequences of the same base composition [3, 
4], and the different microsatellites are represented in the 
genome at different frequencies. For instance, repeats of di- 
and tetranucleotides are more abundant than trinucleotide 
repeats (TNR) in all eukaryotes [2-6]. However, when the 
distribution of simple repeats is compared among exons, 
introns and intragenic regions, TNRs and hexanucleotides 
prevail in exons in all taxonomic groups [7]. Moreover, 
TNRs, which are polymorphic in nature, are longer in 
humans than in other species [3-6]. An evolutionary trend 
towards expansion of CAG repeats increases in order 
from monkeys, to apes, to humans [3-6]. For example, the 
number of CAG repeats in the androgen receptor gene in 
monkeys is similar to that in rodents, ranging from 1-4 
repeats, whereas this number increases to 17 units in great 
apes and up to 26 in humans [7]. 

Repetitive sequences and human pathologies

Remarkably, a high rate of microsatellite instability 
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was discovered in human cancers, first noted in cases of 
hereditary non-polyposis colorectal cancer (HNPCC) [13-
15]. The most common underlying cause of microsatellite 
instability in HNPCC is germ line mutation in one or 
more components of the mismatch repair (MMR) system 
[13-16]. It is now accepted that unstable maintenance of 
microsatellite repeats occurs in about 15% of sporadic 
colorectal cancers [13-26]. Microsatellite instability is also 
frequently associated with ovarian cancers [17, 21, 22] and 
other malignancies, including tumors of endometrium [22, 
23], skin [24], brain [25], stomach [23, 26, 27] and small 
intestine [26] among others. In most cases of HNPCC [13, 
16, 18, 20] and ovarian tumors [17, 21, 22], the majority of 
known mutations occur in Mlh1 and Msh2. Mutations in 
Msh6 [19, 22] and Pms2 [25] are observed less frequently, 
and mutations in Msh3 are rare. In some tumors, Mlh1 de-
ficiency arises from promoter methylation and consequent 
shut-down of Mlh1 gene expression [28-30]. The hallmark 
feature of these MMR-defective cancers is a genome-wide 
increase in spontaneous mutation rate [31-34]. Microsatel-
lite instability in these cancers reflects the inability of MMR 
to correct post-replicative errors throughout the genome. 
As a result, polymerase slippage at the repeating unit can 
give rise to small insertions and deletions [35, 36]. In both 
yeast and bacteria, frameshift errors at repetitive sequences 
increase by 10-100 fold in MMR-defective cells relative to 
controls [36, 37]. Analysis of the magnitude and direction 
of instability at microsatellite loci in HNPCC has revealed 
that short sequences can undergo small insertions, but the 
majority of changes are deletions. For example, a set of 10 
microsatellites was evaluated in 26 HNPCC patients [38]. 
In these patients, instability occurred at TNR repeats within 
the normal Huntington’s Disease (HD) and spinocerebel-
lar ataxia (SCA1) loci, among others. However, 65% of 
the changes at the HD locus and 74% of the changes at 
the SCA1 locus were deletions [38]. The magnitude of 
the changes in HD was, on the average, loss of 1-3 CAG 
repeats [38], with the most frequent change being a loss 
of 1 CAG repeat. Thus, in HNPCC, TNR repeats behave 
as typical microsatellites when post-replicative repair is 
defective, and do not undergo expansion as observed in 
human neurodegenerative diseases such as HD. 

Trinucleotide instability and neurodegenerative diseases 
TNR expansion also depends on the MMR system but 

in ways we do not yet fully understand [39-42]. At least 
four lines of evidence suggest that mechanisms of expan-
sion in TNR diseases are different from those of HNPCC. 
First, HNPCC is characterized by a mutator phenotype 
with genome-wide increase in mutations, yet the TNR 
expansion is limited to a single disease locus [37] (Figure 
1). The limitation to the single disease locus suggests that 

mutations in MMR repair proteins are unlikely to be the 
underlying cause for TNR expansion. Second, the insertions 
and deletions associated with microsatellite instability in 
HNPCC are small, and the size of the change does not vary 
extensively regardless of whether they occur within short or 
long repeats [33, 37]. In contrast, in the absence of an MMR 
defect, the length of the TNR tract determines the prob-
ability of a deletion or an expansion event [43-46]. TNR 
repeats associated with neurodegenerative diseases must 
be above a TNR length threshold (for most TNR diseases 
it lies in the range of 32-42 repeats, ref. 11) before there is 
any probability of expanding in number [11, 43-46]. Short 
TNRs (below threshold) are stable. For intermediate TNR 
alleles, approaching the threshold, both small deletions and 
expansions occur at similar rate upon transmission (roughly 
the same size and frequency as is observed in HNPCC) 

Figure 1 Models of repeat instability for HNPCC and Huntington′s 
disease. During replication, strand slippage can occur. In HNPCC 
patients the mismatch repair enzymes are defective (mmr) and 
unable to carry out repair (perpendicular line). Defective mis-
match repair increases instability at repeats due to slippage and 
formation of extrahelical loops. The inability to repair results in 
genome-wide instability (top). In HD patients, repair enzymes are 
intact but unable to efficiently recognize and/or repair alternative 
DNA structures (shown is a DNA hairpin). The repair block occurs 
at the level of the DNA (bottom), and TNR expansion is primarily 
limited to the disease allele (single site mutation).
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[47, 48]. However, once a TNR tract exceeds a threshold, 
the TNR tract becomes highly prone to expansion, which 
occurs in approximately 80-90% of the cases [44-50]. In 
contrast to the instability in HNPCC, expansion of TNRs 
within neurodegenerative disease loci occurs in the context 
of overall genome stability, and the magnitude of TNR 
expansion in parent-to-child transmission increases with 
the length of the repeat tract [43-46].

Third, tissue-specific instability occurs during human 
[51-55] or animal [54, 56] development in TNR disor-
ders. Somatic variation in repeat tract length is observed 
in the brains of individuals affected by Fragile-X [55], 
HD [52], myotonic dystrophy (DM) [57, 58] and spino-
bulbar muscular atrophy (SBMA) [59]. Somatic changes 
at TNR are also found in different tissues among mouse 
models for these diseases [40-42, 56]. Fourth, in HNPCC, 
microsatellite instability occurs at a wide range of di-, tri-, 
and tetra-nucleotide repeats [33, 37], yet TNR expansion 
is somewhat specific for structure-forming sequences [60, 
61]. In contrast to HNPCC, DNA repair proteins in TNR 
patients are normal. Current models suggest that second-
ary structures such as hairpins, cruciforms and triplexes 
form at specific sites within the disease loci [60-63]. Stable 
secondary structures serve as looped precursors for expan-
sion, which occurs after processing and incorporation of 
the extrahelical DNA into the genome [11, 64-66]. The 
mechanisms by which loops form within the TNR tracts 
in DNA, and how they are processed into the eventual 
expansion, are not fully understood; and several models 
have been proposed.

General mechanisms for TNR expansion
Models for expansion have been recently reviewed [12, 

66]. In general, the models can be divided into two basic 
classes, one of which is replication-dependent (Figure 2, 
ref. 66), and the other one is repair-dependent [66]. It has 
been a matter of debate as to whether all of these mecha-
nisms can act as independent pathways for expansion, 
or whether there is a single mechanism. This has been a 
difficult question to answer since support for various TNR 
expansion models has arisen from different systems and 
different cell types, whose properties of replication rates, 
transcription, and chromatin organization are unlikely to 
be the same. Studies in bacteria, yeast, mammalian cells, 
and mouse models have all contributed to the current 
understanding of TNR expansion as it is found in human 
diseases.

Comparative analysis of models for triplet expansion

Bacteria and yeast 
It is generally accepted that changes in the length of 

microsatellites occur, on the evolutionary time scale, by a 
process of polymerase slippage. In this model, microsat-
ellites misalign during replication, resulting in extraheli-
cal DNA loops. Subsequent integration and/or improper 
resolution of the tract result in gain or loss of repeat units 
within the duplex DNA. An increase in microsatellite 
length occurs if slippage is on the daughter strand, and a 
decrease in microsatellite length occurs if slippage is on 
the template strand [67-70] (Figure 2). Thus, the earliest 
model proposed for TNR expansion was the “replication 
slippage” mechanism. 

Indeed, instability at TNRs could be modeled in both 
bacteria and yeast harboring plasmids with TNR repeats 
[67-72]. These models are valuable for testing how mi-
crosatellites might change during mitosis. Results from 
multiple laboratories indicate that TNR instability in these 
systems depends on the sequence, the initial length of the 
repeat tract, and, strikingly, on its orientation relative to 

Daughter

Figure 2 TNR instability caused by polymerase slippage. DNA 
polymerase strand slippage has been proposed as the primary 
mechanism for instability of TNR. During replication, the TNR units 
can misalign resulting in an extrahelical DNA loop that increases 
TNR length if it occurs on the daughter strand (expansion), and 
decreases TNR length if it occurs on the template strand (deletion). 
Loop / hairpin structures when not properly repaired (no repair) (ref. 
43) are incorporated into the nascent strand (expansion, bottom) 
or skipped (deletion, top). Pol is DNA polymerase.
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the replication origin [67-70]. The mutation rate for TNR 
sequences capable of forming secondary structures is 
consistently high, while TNR sequences that do not form 
secondary structures display mutation rates equivalent to 
background [69]. The high rate of instability at TNRs sug-
gested that secondary structures might facilitate slippage 
at TNRs [12, 62, 65, 66]. In contrast to the expansion in 
human neurodegenerative diseases, however, deletion of 
TNR repeats in bacteria and in yeast occurs roughly 10 
times more frequently than insertion events [70-72], a 
profile more similar to HNPCC than to TNR expansion 
diseases. If interpreted in a replication slippage model, the 
strong deletion bias would suggest that looped intermedi-
ates form more frequently in the template relative to the 
daughter strand. The basis for the deletion bias is not pres-
ently understood, although proofreading activity of DNA 
polymerase is likely to be involved [73]. 

Another poorly understood feature of TNR instability 
observed in model organisms is orientation dependence. 
CAG/CTG repeats, for example, are unstable when CTG 
is the lagging-strand template, but the same sequence is 
relatively stable with CAG as the lagging-strand template 
[67-70]. A similar phenomenon has also been observed for 
CGG/CCG repeats [74-76] and GAA/TCC repeats [77, 78]. 
Thus, the frequency of TNR instability and the extent of 
deletion vary depending on the direction of the replication 
fork progression, despite the fact that the same sequence 
is being replicated. A simple polymerase slippage model 
does not predict these outcomes. 

The absence of single strand binding protein (SSB) in-
creases the rate of instability in bacteria, consistent with the 
involvement of the lagging strand [79]. CTG hairpins are 
somewhat more stable than CAG hairpins in that orientation 
[80, 81]. Thus, one model for the orientation-dependence of 
instability is that transient existence of single stranded DNA 
during lagging strand synthesis might allow a window of 
opportunity for hairpins to form. The differential thermo-
dynamic stability of CTG and CAG hairpins, in this model, 
accounts for the differential rate of hairpin “trapping”, or 
imparts differential repair of CTG relative to CAG hairpins 
[82]. However, several pieces of evidence are inconsistent 
with such a model. First, in order for CTG hairpins to differ-
entially form on the lagging strand, the rate of CTG hairpin 
formation would need to be sufficiently faster than that of 
CAG and would need to be insensitive to the presence of 
SSB. On single strand DNA, however, both CTG and CAG 
repeats form hairpins spontaneously, and re-anneal under 
pseudo-first order kinetics at equal rates [81]. 

Second, a recent in vitro study revealed that both the 
efficiency and the fidelity of hairpin processing depended 
critically on the structure of the DNA substrates [nick 
location and the slip-out composition - CAG versus CTG] 

[82]. If hairpins are captured on the template strand during 
lagging strand synthesis, then the CAG and CTG hairpins 
would reside opposite of a 3′ nick. Yet, both CAG and CTG 
hairpins are repaired poorly under these conditions [82], 
inconsistent with the extensive deletion bias observed when 
CTG is the lagging strand template in vivo. 

Third, the thermodynamics of CTG hairpin formation 
would apply only when it resides on the lagging strand tem-
plate and not when it is on the daughter strand. However, 
end fraying and hairpin formation at the free end of the 
Okazaki fragment have been proposed as another model for 
expansion [83]. A final issue is the fact that TNR instability 
can also occur on the leading strand during rolling circle 
replication [84]. Thus, there is no clear model for how 
hairpins might form in an orientation-dependent manner. 
Most models agree, however, that replication plays a caus-
ative role in generating small insertions and deletions as 
mutations in polδ, polα, Rad27 and PCNA were all shown 
to increase TNR instability in yeast [70, 85]. Overall, the 
inability of simple dividing organisms to reproduce the 
larger expansions observed in human diseases suggested 
that, if expansion occurred during replication, it must be 
influenced by additional parameters. 

Those parameters are poorly understood. Expansion 
similar to that observed in human diseases does not appear 
to arise as a result of transcription in simple organisms. 
Experimental induction of transcription in replicating 
plasmids (as well as in mammalian cells) can increase the 
degree of instability, but the resulting changes are primar-
ily deletions [86-88]. Further, the increase of instability 
in some reports occurred only when the bacteria passed 
through stationary phases of cell growth [87]. Emerging 
evidence suggests that DNA replication blocks, and their 
resolution through DNA repair pathways, play roles [66].

During primer extension reactions in vitro, pausing is 
observed at TNRs and other microsatellites [89, 90]. TNRs 
appear to underlie the impediment, since the pausing is 
independent of the polymerase. Length- and sequence-
dependent repeat instability is observed using a number 
of polymerases including Klenow fragment of Escherichia 
coli DNA polymerase I, bacteriophage T7 DNA polymerase 
or the human DNA polymerase β [89-93]. In vivo, dramatic 
stalling at TNRs is observed in yeast during replication fork 
progression [94-96]. As visualized by two-dimensional gel 
analysis of replication intermediates, CAG/CTG, CGG/
CCG, and GAA/TTC repeats cause arrest of the replication 
fork in a length-dependent manner [94-96]. These results 
suggested that TNR expansion might occur through mecha-
nisms needed to re-start replication [12]. Consistent with 
that idea, loss of unfolding proteins [97, 98] or of helicases 
such as Werner [99, 100], Bloom [101] and Srs2 [102], all 
of which facilitate fork progression through difficult DNA 
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sequences, increases the level of instability. In E. coli, TNR 
deletions can also occur after the collapse of the replication 
fork in an attempt to re-start replication [103]. For example, 
mutations in recA and recB, recombination proteins needed 
to resolve replication fork collapse, had a stabilizing effect 
on (CAG)•(CTG) repeats [104]. Analysis in yeast indicates 
that long TNRs are “fragile sites”, prone to breakage dur-
ing replication [105]. Consistent with this idea, a number 
of studies conducted in bacteria and yeast also provide 
evidence that gene conversion and recombination, as well 
as excision repair, frequently result in small deletions and 
insertions of TNR repeats [104-111]. 

Although repeat-length changes in bacteria and yeast 
systems are primarily small, larger TNR expansions are not 
absent. However, they occur at low frequency and selec-
tion systems are required to observe them. One selection 
method, using 5-fluoroorotic acid, has been particularly 
informative [112]. Upon selection in yeast, the frequency 
of large expansions from an existing length of 25 for 
CAG/CTG [69], CGG/CCG [95], or GAA/TTC [113] 
repeats is length- and sequence- dependent as observed in 
human diseases. Moreover, the sizes of the expansion are 
more consistent with those of human diseases, with gains 
of around 10-60 repeats, and 20 being the most frequent 
[113]. Thus, data generated using these selection systems 
have been informative in identifying key factors affecting 
large TNR expansions.

For CGG repeats, a mutation in the replication factor 
C complex increased the expansion rate by ~50-fold, sug-
gesting an important role for DNA replication polymerases 
in the expansion mechanisms [95]. Consistent with this, 
larger expansions were also observed in the absence of 
FEN-1/RAD27 in yeast [113]. FEN1/RAD27 is respon-
sible for removal of the flap formed in Okazaki fragments 
during replication and during repair-dependent synthesis 
[114, 115]. Several laboratories have demonstrated that 
FEN-1 is unable to efficiently process stable secondary 
structures [113, 114], presumably because the 5′ end is 
not available for FEN-1 loading. Loss of FEN-1/RAD27 
in yeast increased the rate of expansion in two distinct 
steps by [1] increasing the likelihood of flap formation, 
and [2] inhibiting flap processing, thereby, increasing flap 
half-life [113]. Contraction rates for CTG and CAG tracts 
were measured using a simple variation of the selection 
assay [112]. The rate of contractions by this assay in the 
rad27∆ strain was nearly identical for CTG and CAG, at 
4.2 ± 1.2 × 10-3 and 5.0 ± 0.4 × 10-3 per cell generation, 
respectively [113]. Recently, the fate of CAG/CTG repeats 
was tested in yeast harboring a RAD27 mutant deficient in 
its endonuclease activity [115]. The TNRs were unstable in 
these cells. The inability to cleave flaps resulted in a flap 
equilibration in which various intermediates were formed 

by annealing to the adjacent primer. Thus, cleavage by 
Rad27 is needed to prevent expansion [115]. While TNR 
expansion is clearly connected to problems arising from 
replication, all of the examined proteins are also involved 
in repair of DNA strand breaks. Therefore, whether infre-
quent expansions detected in various experimental settings 
arise by DNA replication per se or from repair-dependent 
synthesis remains an unresolved issue. 

Overall, replication and repair problems in model or-
ganisms enhance the frequency of TNR instability in the 
form of small deletions and insertions. Simple models have 
brought to light the importance of replication stalling and 
replication fork collapse in TNR instability. However, in 
general, bacteria and yeast model systems have not yielded 
the expected insight into the TNR expansion process as 
might apply to human diseases. 

Mammalian systems 
Translation of results from simple model organisms into 

mammalian systems has been challenging in part due to the 
variable nature of the mammalian models used. The length 
of the TNR tract, the replication rate, and the tissue type 
are among the variables.

 
Expansion in cultured mammalian cells Mammalian 
cell models share the property of cell division with yeast 
and bacteria but at slower rates. While the fate of TNRs in 
bacteria and yeast overall displays similar trends, different 
results have been shown for the fate of TNRs in cultured 
cells obtained from affected individuals. In a number of 
studies, the endogenous disease-length alleles within HD 
(CAG repeats) [116], SBMA [CAG repeats] [117] and 
Fragile X (CGG repeats) [118] loci display little if any 
instability in cultured cells obtained from patients. 

In cultured embryonic fibroblasts from R6/1 mice, 
CAG repeats in the human HD transgene remained stable 
in the absence of DNA repair enzymes such as Msh2 and 
Ogg1 [119]. New genetic assays have been developed us-
ing shuttle vectors containing the promoter-TNR-reporter 
gene sequences [120]. The vector harbors the SV40 origin 
and the large T antigen gene allowing portability between 
primate cell lines [120]. When propagated in cultured cells, 
CAG of 25-33 repeats contract at frequencies as high as 1% 
in both 293T human cells and in COS-1 monkey cells [120]. 
Plasmids may replicate faster than the cells themselves, so 
these data indicate that the rate of replication can play a role 
in the resulting instability. Interestingly, plasmids harboring 
TNRs delete their repeats during replication in mammalian 
cells, similar to that in bacteria and yeast. Deletions are 
also observed during early and rapid cell division in single 
cells from the 8-cell embryo of R6/1 animals [116], yet no 
alteration occurred in these animals later in development 
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after cells became terminally differentiated. 
Taken together these data suggest that the rate of replica-

tion is a factor in TNR stability in mammalian cells. The 
fate of the repeats also depends on the length of the initial 
repeat tract, which has a large impact on the direction of 
change [121, 122]. For example, in primary fibroblasts 
derived from a fetus with DM1, CTG tracts of 216 repeats 
expanded to 338–386 repeats with mutation frequencies 
approaching 100% [121]. Expansion depended on replica-
tion. Both inhibiting replication initiation with mimosine 
and inhibiting leading- and lagging-strand synthesis with 
aphidicolin significantly enhanced CTG expansions at 
the disease allele but not at the short, normal allele [121]. 
Similarly, CAG repeats in fibroblasts isolated from R6/2 
animals harboring multiple copies of a human HD trans-
gene showed significant expansions. After approximately 
600 cell doublings, the major CAG peak increased in length 
from the initial 155 to approximately 170 triplets [123]. 
In all these cases [121-123], the magnitude of expansion 
depended on the initial length of the repetitive tract. 

Although there are some differences, the fate of repeats 
in proliferating mammalian cells displays some of the 

same trends as observed in dividing bacteria and yeast. 
Overall, data suggest that repeat length and replication rate 
predict the degree and direction (deletion vs. expansion) 
of instability. In reality these effects in mammalian cells 
are more complicated, as they appear to also depend on 
the cell type. For example, embryonic fibroblasts and lung 
cells from DM transgenic mice stably maintained their CTG 
repeats in culture, while repeats from kidney cells were 
unstable [124]. Thus, locus-specific differences, differences 
in replication rates and/or tissue-specific factors may be 
important components affecting the expansion process in 
mammalian cells [124]. 

Expansion in vivo All studies in mammalian cell models 
and in simple organisms are consistent with the notion 
that replication is a critical component of the expansion 
mechanism. Whether expansion in a human disease arises 
from mitotic replication per se or from repair-dependent 
replication or both is unresolved. For example, long re-
peats have tendencies to break during cell division, as 
was shown in yeast [105], therefore, the two processes, 
replication and repair, are difficult to separate. In addition, 

Table1 Effect of DNA repair enzymes on expansion in vivo
Mouse 
model
HD

DM

Deleted
enzyme
Fen-1
Msh2

Msh3
Msh6
Aag 
Ogg1
Nth1

Pms2
Ku
Rad54
Rad52
Msh2
Msh3
Msh6

Fen-1

Genotype

R6/1/Fen1(–/+)
Hdh(Q111)/Msh2(–/–) 
R6/1/Msh2(–/–)
R6/1/Msh3(–/–)
R6/1/Msh6(–/–)
R6/1/Aag(–/–)
R6/1/Ogg1(–/–)
R6/1/Nth1(–/–)

DM/Pms2(–/–)
DM/Ku(–/–)
DM/Rad54(–/–)
DM/Rad52(–/–)
DM/Msh2(–/–)
DM/Msh3(–/–)
DM/Msh6(–/–)

DM/Fen-1(–/+)

Effect of deletion
  on expansion
Some changes*
Expansion abrogation
Expansion abrogation 
Expansion abrogation
Decrease in mean change
None
Significant reduction
None

Significant reduction in expansion
None
None
Decrease in mean change**
Expansion abrogation
Expansion abrogation
Decrease in mean change
Increase in frequency
None

Instability
mode
(i)
(i, s)
(i, s)
(s)
(s)

(s)

(s)

(s)
(i, s)
(i, s)
(s)
(s)
(s)

Reference

127
41
39, 129
43
43
119
119
119

174
42
42
42
42
40
42
40
128

HD and DM transgenic animals were used to test the importance of DNA repair enzymes in TNR expansion in mammals in vivo. The genotypes 
are indicated. Fen-1 (Flap Endonuclease); Msh2, MutS homologue 2; Msh3, MutS homologue 3; Msh6, MutS homologue 6; AAG, alkyladenine 
glycosylase; Ogg1, 7,8-dihydro-8-oxo-guanine-DNA glycosylase; NTH1, homologue of Escherichia coli endonuclease III. * A decrease in deletions 
and an increase in expansions were only observed in male offspring. ** A decrease in the magnitude of expansion was observed. Mode of instabil-
ity: (i) –intergenerational, (s)-somatic expansion. Decrease in mean change is a decrease in the magnitude of age-dependent expansion compared to 
animals that are wild type for the corresponding repair enzyme.
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functional alterations in replication and repair proteins in 
mammals have not been easy to evaluate. In mice, deletion 
of key replication and/or repair proteins relevant to TNR 
expansion is often embryonic lethal. For example, mice 
knockout for polymerase β [125] and for FEN-1 [126] are 
not viable. Furthermore, in vivo tools to examine the rela-
tive importance of replication on expansion in animals are 
also limited due to the fact that cell proliferation in most 
adult tissues has ceased. Despite all these issues, mouse 
models have proven to be extremely valuable in validating 
proposed mechanisms for expansion. 

The effect of FEN-1 haploinsufficiency on TNR expan-
sion has been examined in heterozygous animals (Table 1). 
While there was no visible effect on age-dependent expan-
sion at the HD locus in somatic tissues of HD/Fen-1(+/–) 
mice as compared to wild type littermates, a decrease in 
deletions and an increase in expansions were observed in 
male offspring [127] (Table 1). Similarly, no alterations 
in CTG tract size were observed in somatic cells from 
DM/Fen-1(+/–) animals [128]. Repeat profiles between 
wild type, Fen1(+/–) and Fen1(–/–) early embryos have 
also been compared in the latter study. No difference was 
found, leading to a conclusion that FEN-1 is not essential 
for maintaining the stability of TNR in early embryonic 
divisions [128]. FEN-1 is an essential replication protein, 
but it is also needed for gap filling synthesis during repair of 
DNA strand breaks and recombination. The lack of effects 
on expansion in Fen1(–/–) embryos is not easy to interpret. 
The results may indicate that there is embryonic selection 
for stable alleles. Another possibility is that during rapid 

cell divisions TNRs tend to undergo deletions, counteract-
ing the expansion events that may occur.

Germ cells as a model to assess expansion mechanisms 
Germ cells from transgenic animals have been a valuable 
model to further assess the importance of replication in 
causing expansion in mammals. The pool of germ cells in 
the adult male includes spermatogonia (SG), which divide, 
spermatocytes (SC), which undergo meiotic recombination, 
and spermatids (ST), which differentiate (and allow repair 
without replication) to generate mature sperms (Figure 
3A). The degree of expansion at each stage of the germ 
cell development has been informative. 

In a mouse model for HD, expansion of CAG is primarily 
detected in haploid ST [129]. Detection at this post-meiotic 
stage of development would indicate that expansion does 
not require replication. However, different results were 
obtained in germ cells of HD patients. In laser capture 
micro-dissected cells, expansion of the CAG tract was 
observed in premeiotic cells (which presumably included 
SG and SC) as well as in ST [130]. The reason for the 
discrepancy between findings in the mouse model and 
in human samples is not yet clear. However, differences 
in germ cell development and in lifespan may contribute 
[131]. In human spermatogonial stem cells, the lifetime 
number of cell divisions is estimated to be approximately 
an order of magnitude higher than in the mouse. There 
may be fewer opportunities for mouse premeiotic cells to 
accumulate expansion mutations [130]. If true, this would 
predict that expansions in the sperm of affected individu-

Figure 3 Expansion and strand 
breaks in developing germ cells in 
HD. (A) A schematic diagram of sper-
matogenesis. Each developmental 
stage is shown; SG, spermatogonia; 
SC, spermatocytes; ST, spermatids; 
SZ, spermatozoons. SG undergo 
mitotic division and produce primary 
SC (1°) which after first meiotic divi-
sion produce secondary SC (2°). In 
the second meiotic round ST are 
generated. They undergo terminal 
differentiation producing SZ. (B) 
Comet assay for single strand breaks 
in sorted germ cells of HD transgenic 
mice. The % of cells with breaks is 
shown. Expansion is detected only in 
ST in HD transgenic mice [129] but 
is observed in SG, SC and ST in HD 
patients [130].
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als would increase with age. However, in a recent study 
of HD patients, no correlation was found between the 
CAG repeat-length variation in sperm and the age of the 
HD subjects at the time of sperm donation [131]. Neither 
parental age nor birth order was shown to have a significant 
effect on inherited repeat-length changes in this group of 
HD patients. Expansions observed in post-mitotic germ 
cells must occur by repair-dependent mechanisms. The 
mechanisms at play in dividing cells may be polymerase 
slippage or replication stalling and re-start. Slippage, even 
in mammalian cells, appears to most frequently generate 
deletions. Thus, break-dependent repair synthesis, as has 
been observed in yeast, is an alternative process that could 
generate expansions [12, 94, 95, 105]. Developing mouse 

germ cells are known to accumulate strand beaks, which 
can be observed by the comet assay (Figure 3B). Presently, 
differences between mouse and human germ cell models 
in HD remain unresolved.

In contrast to HD, CTG repeats in DM mice expand in 
both dividing SG and terminally differentiated ST [132]. 
The repeat tract continues to increase in length with age, in-
dicating that expansions are continuously produced during 
cell proliferations throughout life. In humans, expansions at 
the DM locus have been observed in dividing cells of early 
embryo [133]. Why HD alleles undergo deletion and DM 
alleles undergo expansion in dividing cells is not known. 
However, a key difference between TNRs at the HD and 
DM loci is the length of the tract. The CTG repeat at the 

Figure 4 Base excision repair model for age-dependent somatic TNR expansion in HD. During aging, endogenous oxidative 
damage arising from mitochondrial respiration creates oxidative DNA lesions. Oxidative lesions, such as 8-oxo-G, tend to ac-
cumulate within CAG tract with age (G=O). Under conditions of normal BER, OGG1/APE cleavage produces a single strand 
break, which facilitates hairpin formation and allows strand displacement during gap-filling synthesis. The lifetime of the hairpin 
is sufficiently prolonged by MSH2/MSH3 binding to allow ligation of the hairpin loop. Green bars are CAG or CTG, as indicated; 
red bars are the repeats added in the expansion event.
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DM locus resides in a non-transcribed region of the gene 
and can grow to thousands of units [57, 58]. As discussed 
above, in simple organisms, long repeats cause replica-
tion stalling, often resulting in strand breaks [12, 94, 95, 
105]. Thus, break-dependent replication may account for 
the presence of CTG expansions in dividing cells. In the 
HD gene, on the other hand, the CAG tract is within the 
protein-coding region and rarely exceeds 130 units [45-
48]. Presumably, this is due to selective pressure. The HD 
protein is essential for viability in mammals. If HD alleles 
were too long, the resulting defective gene product would 
diminish cell survival. At the HD locus, the shorter CAG 
tract may not pose severe blocks for the polymerase and 
may tend to break less often. The existence of locus-specific 
factors that influence HD and DM cannot be excluded, and 
they are being explored actively. 

In vivo mouse models and somatic expansion Mouse 
models have also shed light on the mechanism of somatic 
repeat-length changes, which are now believed to modulate 
the severity and onset of the diseases [53, 54, 134]. Somatic 
expansion occurs at an inherited, expanded TNR. Altera-
tions in repeat length have been observed in affected areas 
in HD and DM patients [52, 53, 57] and in the tissues of 
aging transgenic mouse models for HD [41, 54, 56, 129] 
and DM [40, 135, 136]. We and others have shown that 
the inherited repeat tracts in HD transgenic mice are stably 
maintained from birth until 4 months but begin to expand 
in non-dividing brain cells at midlife [56, 129]. Expanded 
CAG tracts continue to increase in length as these animals 
age [129], thereby serving as templates for synthesis of 
increasingly toxic HD proteins in the brain and other so-
matic tissues. Thus, in addition to the inherited expansion, 
somatic changes in repeat tracts in the brain may contribute 
to the disease by modulating its severity and onset.

The factors that cause somatic instability have been the 
subject of intense research. The importance of strand break-
age in causing expansion in simple organisms prompted 
evaluation of whether TNR expansion was affected by 
factors involved in DNA repair in mice (Table 1). DM 
animals were crossed with mouse knockouts for key DNA 
repair enzymes. Knockouts of Rad52, Rad54, and Ku had 
no effect on expansion of the CTG repeat in DM mice [42]. 
In contrast to simple model organisms, TNR expansion in 
mammals does not appear to require enzymes generally 
needed for repair of double strand breaks (DSB) [42]. 
Recent evidence has revealed that somatic expansion in 
mammals more likely occurs by a base excision repair 
mechanism [119] (Figure 4). Age-dependent changes at the 
human HD transgene locus occur concomitantly with the 
accumulation of oxidative DNA damage. Importantly, loss 
of 7,8-dihydro-8-oxo-guanine-DNA glycosylase (Ogg1), 

a DNA glycosylase responsible for removal of oxidized 
guanines, suppresses TNR expansion in HD mice (Table 
1). Deletion of other DNA glycosylases, however, does not 
suppress expansion (Table 1). Thus, age-dependent somatic 
expansion associated with HD occurs in the process of 
removing oxidized base lesions. TNR expansion in both 
germ cells and somatic cells of HD [39, 41, 43, 129] and 
DM [40, 42] transgenic mice requires the MMR proteins 
Msh2 and Msh3, but not Msh6. Thus it is possible that TNR 
expansion depends on the cooperation of base excision 
repair and MMR pathways through interactions of OGG1 
and the Msh2/Msh3 heterodimer during the removal of 
oxidative DNA damage (Figure 4). 

Taken together, the data from simple models to man 
suggest that both replication and repair processes are likely 
to contribute to TNR expansion. Future studies will refine 
the mechanistic models. 

Genomic and chromatin factors governing microsat-
ellite instability

Common cis-acting factors
In the simple, rapidly dividing organisms, bacteria and 

yeast, cis-elements influencing TNR fate have been limited 
to the sequence of the repeat, its length and the presence 
of interruptions [67-70, 137]. 

Data on TNR instability from human studies and vari-
ous transgenic and knock-in mouse models suggest that 
sequences immediately surrounding the repeats as well 
as overall chromatin context might also be important 
in determining TNR stability. Analysis of flanking ele-
ments for a number of different repeats has revealed that 
the most expandable loci are those located within CpG 
islands [138]. Indeed, the methylation status of CpG can 
alter the stability of the CGG repeats at the Fragile X loci 
[138-140]. Treatment of mammalian cells in vitro with 
methyltransferase inhibitors leads to the loss of the methyl 
group from 5-Me-cytosine, causing subsequent destabiliza-
tion of the CTG/CAG repeats at the DM locus [141]. DNA 
methylation is typically associated with tight chromatin 
packaging and gene silencing. Analysis of the DM locus 
reveals that the CTG repeats form a functional component 
of an insulator element. Methylation of this locus occurs 
in congenital forms of DM, prevents the binding of CTCF, 
and disrupts the insulator function [142]. These remarkable 
findings suggest that chromatin context has an impact on 
the stability of TNRs. 

Analogous to bacteria and yeast, the location of DNA 
replication origin relative to the repeat stretch can influence 
the stability and the direction of change (deletion vs. expan-
sion; ref. 143) for human TNR disease loci. While several 
disease loci have been examined, including spinal cerebel-
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lar ataxia type 7, HD, SBMA, FMR1 and FMR2 [144-146], 
the effects of the position of a replication origin have not 
yet been well characterized, The HD and SCA-7 repeats 
served as the lagging strand template. On the other hand, 
origin firing at the SBMA locus occurred on either side of 
the repeat [144]. The replication origin for the FMR2 locus 
maps to the promoter region of the gene [145]. In addition, 
the FMR2 replication origin coincided with CpG islands 
and tended to fire late in S phase [145]. Precisely how the 
position of a replication origin determines TNR instability 
in the mammalian genome in vivo remains unclear. Mam-
malian origins of replication have yet to be fully mapped. 
Nevertheless, TNR instability is thought to be influenced 
by many factors including chromatin organization [142], 
DNA methylation [138-141], and transcription etc. 

Expansion in human diseases and mouse models: similari-
ties and differences

Among model organisms, mice have so far been shown 
to best recapitulate the expansion in human TNR diseases. 
Transgenic or knock-in mouse models for TNR diseases 
have consistently demonstrated a trend towards expansion, 
both somatically and inter-generationally [40, 41, 54, 56, 
129, 135, 136]. Although they show an expansion bias 
similar to that in humans, TNRs in the mouse genome ap-
pear to have a higher threshold for instability. For example, 
only when a repeat stretch inserted into the mouse genome 
was very long, has expansion been observed [40, 41, 54, 
56, 128, 135, 136]. While moderately-expanded TNRs 
are known to be highly unstable in humans and to expand 
further in successive generations, they are stably transmit-
ted in mice [147-151]. Furthermore, in contrast to humans, 
long TNRs inserted in the mouse genome rarely show big 
leaps in repeat number over a single transmission. These 
differences suggest that genomic context and/or chromatin 
organization might play a significant role in determining 
the stability of microsatellites at a specific locus. 

The transgenic and knock-in mouse models suggest that 
the site of transgene integration as well as the amount of 
human genomic sequence flanking the repeat affects the 
level of instability. For example, TNR within a cDNA in-
serted into the mouse genome often exhibited no instability 
despite a relatively high number of repeat units [148, 149]. 
In contrast, transgenic mice that had large pieces of human 
genomic DNA (kilobases) as the repeat context showed 
more instability [40, 41, 54, 56]. Additionally, mice that had 
long repeats inserted into the endogenous gene (knock-in) 
or into a transgene, tended to show more instability [40, 41, 
54, 56, 152]. None, of the models however recapitulated a 
threshold length for instability comparable to that observed 
in humans suggesting the existence of regulatory factors 
that differ between mice and humans.

Fragility and cell cycle control
Very little is known about the influence of chromatin 

organization and/or chromatin remodeling on microsatel-
lite instability. Initial experiments in yeast have provided 
evidence that CAG/CTG and CGG/CCG tracts are prone 
to break in vivo [105, 108, 153, 154]. It has been hypoth-
esized that stretches of these repeats might represent fragile 
sites [105, 153, 154], and that they are more susceptible 
to breakage and DNA damage [155]. Fragile sites have 
been described in yeast [156-159] and mammalian cells 
[160]. Common fragile sites in the mammalian genome 
are generally defined as loci that exhibit gaps and breaks 
under conditions of replicative stress [155, 160, 161]. 
Perturbations in DNA replication often result in DSB at 
the fragile sites [161, 162] and eventually may lead to 
gross chromosomal rearrangements, such as translocations, 
deletions, and inversions [162, 163]. Rare fragile sites, on 
the other hand, are thought to arise from expanded di- or 
trinucleotide repeats [164] which can break in vivo in the 
absence of replicative stress [105, 108, 153, 154]. It has 
been suggested that DNA lesions may initiate the strand 
breakage [153, 154].

The mechanism underlying fragility in general is not 
well understood. Extensive studies in yeast have revealed 
properties that fragile sites may share. First, some were 
demonstrated to include repetitive sequences such as pal-
indromes, inverted repeats, and Ty telomeric elements that 
are capable of forming structures [156, 165-167]. Second, 
yeast fragile sites are situated on chromosomes in the ar-
eas of slow-moving DNA replication forks and origins of 
replication which fire late [161, 168, 169] and often lead 
to DSB [161, 165]. 

Cell cycle control is one of the cellular pathways de-
signed to prevent chromosomal instability. Checkpoints 
function during the cell cycle to ensure the correct trans-
mission of genetic material. Checkpoint proteins interact 
with the DNA replication machinery and respond to various 
threats to DNA, including damage, replication fork blocks 
and formation of aberrant DNA structures. Checkpoints can 
arrest the cell cycle and activate appropriate cellular re-
sponses [159, 170, 171]. Consistently, defects in checkpoint 
or cell cycle progression proteins increase chromosomal 
instability and re-arrangements [159, 169-173]. The role of 
checkpoint proteins in TNR instability has been examined 
in yeast. Lahiri et al. have found that deletion of Mec1 
(homologue of human ATR) and Rad53 (homologue of 
human Chk2) resulted in increased fragility of expanded 
CAG repeats [173]. Significantly higher rates of deletions 
have been observed in these mutant strains as compared 
to wild type cells. The authors hypothesized that repair of 
DNA damage-stalled replication forks and of breaks and 
gaps at long CAG repeats in checkpoint-deficient strains 
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occurred with less fidelity, and thus, led to deletions.
There are fewer results available on checkpoint regu-

lation and fragile sites in mammalian systems. There is, 
however, evidence suggesting that mammalian fragile sites 
possess some of the properties that have been described 
in yeast — i.e., slower replication fork progression and 
susceptibility to DSB [161, 165, 165, 168]. The differences 
between the mammalian and yeast fragile sites include 
the larger sizes (can be greater than 100 kb) and the more 
complex composition for the former, as they do not consist 
of a single type of repeat [160, 166]. Whether fragility is 
sequence-specific or is dictated by chromatin organization 
remains unclear. Emerging data on the involvement of the 
DNA repair machinery [39-41, 42, 119, 132] in expansion 
suggest that chromatin environment may determine the sus-
ceptibility of a particular repetitive locus to DNA damage 
and the consequent instability that follows repair. 

Conclusion 

It is clear that many biological transactions determine 
whether TNR expand or contract. However, data from sim-
ple organisms to man have revealed several features that are 
common among all systems. First, expansion depends on 
both replication and repair. Second, in the context of mitosis 
most TNR appear to contract rather than expand. There is a 
strong deletion bias at TNR tracts in simple organisms and 
in proliferating mammalian cells. Third, expansion appears 
to be associated with long TNR tracts at both the DM and 
HD loci. Fourth, long alleles are subject to breakage. Taken 
together, the facts implicate repeat length as a critical, and 
perhaps even a unifying factor in the expansion mechanism, 
which could tie together disparate findings as to the fate 
of TNR at different disease loci. Single and double strand 
breaks arising from replication stress may explain why 
expansion depends on both replication and repair proteins. 
Alternatively, replication may be required in the context of 
gap filling synthesis. Although the complex phenomenon 
of TNR expansion is not yet fully understood, studies in 
a number of in vivo systems are uncovering features of 
expansion mechanisms that can be further tested by the 
scientific community. 
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