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Introduction

The transforming growth factor-beta (TGF-β) family 
of cytokines, including TGF-β, bone morphogenic pro-
teins (BMPs), and activin/inhibin, plays crucial roles in 
embryonic development, adult tissue homeostasis and the 
pathogenesis of a variety of diseases. The highly conserved 
core of the canonical TGF-β/BMP signaling is a simple 
linear cascade that involves the TGF-β/BMP ligands, two 
types of receptors (type I and II) and the signal transducers, 
Smads. On activation, the receptor complex phosphorylates 
the carboxy-terminus of receptor-regulated Smad proteins 
(R-Smads), including Smad1, 5 and 8 for BMP signaling 
and Smad2 and 3 for TGF-β signaling. Activated R-Smads 
interact with the common partner Smad, Smad4, and ac-
cumulate in the nucleus, where the Smad complex directly 
binds defined elements on the DNA and regulates target 
gene expression together with numerous other factors [1-3]. 
Simple as it is, the TGF-β/BMP pathway controls a myriad 
of events, including cell proliferation, differentiation, apop-
tosis, migration, extracellular matrix (ECM) remodeling, 

immune functions, and tumor invasion/metastasis [4-8]. 
On the other hand, the activity and the signaling outcomes 
of this pathway are also influenced by many intracellular 
and extracellular signals [1, 3, 9]. This interplay between 
TGF-β/BMP and other pathways, which is tightly regulated 
both spatially and temporally, gives rise to the remarkable 
complexity, diversity, flexibility, and delicacy of TGF-β/
BMP functions that have been exemplified by a great 
number of studies. 

Signaling cross-talk is a perennial theme of TGF-β 
research. In retrospect, the entire field of TGF-β research 
sprang from a few groundbreaking observations, which 
we now know as a typical form of signaling cross-talk (re-
viewed by [10]). In the early 1980s, Roberts and colleagues 
isolated two fractions from murine sarcoma cell extracts 
that could synergistically induce remarkable growth of 
normal fibroblasts (NRK cells) on soft agar, a hallmark of 
cellular transformation. These two components were there-
fore named transforming growth factor α and β (TGF-α and 
TGF-β) [11-13]. TGF-α alone had only limited transform-
ing activity, and it was soon proven to be a ligand for the 
epithelial growth factor receptor (EGFR) and equivalent 
to EGF in promoting newborn mouse eyelid opening [14]. 
The other polypeptide, TGF-β, was shown to be a potent in-
ducer of NRK cell transformation, but only in the presence 
of TGF-α or EGF. This was undoubtedly the first classic 
example of functional interaction between TGF-β and other 
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Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in the vast major-
ity of cellular processes and is fundamentally important during the entire life of all metazoans. Deregulation of TGF-β/
BMP activity almost invariably leads to developmental defects and/or diseases, including cancer. The proper functioning 
of the TGF-β/BMP pathway depends on its constitutive and extensive communication with other signaling pathways, 
leading to synergistic or antagonistic effects and eventually desirable biological outcomes. The nature of such signaling 
cross-talk is overwhelmingly complex and highly context-dependent. Here we review the different modes of cross-talk 
between TGF-β/BMP and the signaling pathways of Mitogen-activated protein kinase, phosphatidylinositol-3 kinase/
Akt, Wnt, Hedgehog, Notch, and the interleukin/interferon-gamma/tumor necrosis factor-alpha cytokines, with an 
emphasis on the underlying molecular mechanisms.
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signaling pathways, although the underlying mechanisms 
remain not completely understood even today. 

At the organism level, TGF-β/BMP talks with other 
pathways at every stage of the life of a metazoan from birth 
to death. During embryonic development, the complex 
but delicate interactions between the TGF-β/BMP, Wnt/
Wg, Hedgehog (Hh), Notch, mitogen-activated protein 
kinase (MAPK), and other pathways are crucial for stem 
cell maintenance, body patterning, cell fate determination, 
organogenesis, and so on. These signals are also instru-
mental for the proper growth and functioning of cells and 
tissues in adult animals (homeostasis), whereas concurrent 
alterations of these pathways are commonly found in aged 
or diseased animals, as repetitively seen during the develop-
ment of cancer [7, 15-20]. 

In the past three decades since its discovery, the down-
stream signaling cascade of TGF-β has been clearly delin-
eated. The biochemical basis for the extensive cross-talk 
between TGF-β and other pathways is essentially two-fold: 
(1) multiple components of the TGF-β pathway (mainly 
Smads) make direct and dynamic contacts with numerous 
other proteins; and (2) TGF-β has a great many targets, both 
transcriptional and non-transcriptional (Figure 1). Many of 
these binding partners and target molecules are essential 
constituents of other pathways, naturally integrating TGF-β 
with other signals to produce highly regulated cellular 

responses. In this review, we focus on these features and 
discuss the different modes of TGF-β signaling cross-talk 
as well as the ensuing context-dependent outcomes. 

TGF-β and the MAPK pathway

MAPKs, including Erk1/2, JNK1/2/3, and p38/MAPKs, 
are evolutionarily conserved regulators essential for a 
variety of cellular events. Multiple extracellular stimuli 
can initiate a cascade of serial phosphorylation activation 
from MAP kinase kinase kinase (MAPKKK) to MAP ki-
nase kinase (MAPKK) and finally MAPK [21]. Activated 
MAPKs phosphorylate a battery of proteins (primarily 
nuclear transcription factors) with diverse functions in 
regulating proliferation, survival, migration, and so on. One 
of the best characterized trigger for this MAPK pathway is 
Ras activation, which propagates signals from a number of 
ligand- or self-activated receptor tyrosine kinases (RTKs), 
such as EGFR (including HER2/Neu/ErbB2), FGFR, IGFR, 
PDGFR, and insulin receptor [21-23]. In addition, MAPKs 
can also be regulated by TGF-β/BMP stimulation [24, 25], 
which represents an important mechanism for non-Smad 
TGF-β signaling and is discussed in a separate review. 
Here, we mainly focus on how MAPK activity modulates 
the function of TGF-β/BMP.

A series of studies have shown that HER2/Neu/ErbB2 

Figure 1 Basic modes of signaling cross-talk. A cross-talk exists between pathways A and B when both of the following criteria 
are met. Functionally, the combinatorial signal from A and B must produce a different response than that triggered by A or B 
alone. Mechanistically, the A and B pathways must be connected in at least one of the three depicted ways: (a) components 
of the two pathways physically interact; (b) components of one pathway are enzymatic or transcriptional targets of the other; 
and (c) one signal modulates or competes for a key modulator or mediator (“M”) of the other. In this scheme, A and B are in-
terchangeable, and the arrows may represent either positive or negative regulations. Note that an altered response can arise 
from independent (non-cross-talk) inputs (d). 
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signaling, which activates both the MAPK and phosphati-
dylinositol-3 kinase (PI3K)/Akt pathways, communicates 
intimately with TGF-β/Smad in controlling mammary 
epithelial cell biology and breast cancer development 
[6,26-31]. A general notion emerging from these studies is 
that HER2/Ras can antagonize TGF-β-induced apoptosis 
and cell cycle arrest, while allowing for the pro-migratory 
and pro-invasive functions of TGF-β. Therefore, both 
positive and negative regulations exist between the two 
pathways. 

The synergy between the TGF-β and HER2/Ras/MAPK 
pathways often leads to the secretion of additional growth 
factors and cytokines, including TGF-β itself, which in 
turn promote epithelial-to-mesenchymal transition (EMT) 
and cell invasion [32-34], whereas JNK kinases seem to 
negatively regulate the autocrine expression of TGF-β1 
[35]. MEK/Erk has been reported to positively regulate 
SMAD3 gene transcription in epithelial and smooth muscle 
cells [36]. On the other hand, TGF-β/Smad induces the 
expression of platelet-derived growth factor (PDGF) in 
liver cancer and glioma, which is required for fulfilling 
the pro-oncogenic and pro-metastatic functions of TGF-β 
[37, 38].

Numerous studies have revealed that the linker region 
of Smad proteins is a critical platform for integrating RTK/
MAPK signals with the TGF-β/BMP pathway. The Smad 
linker region is loosely organized and highly flexible in 
structure, rendering it readily accessible for a number of 
kinases. This region is also rich in serine, threonine as well 
as proline residues, favoring phosphorylation by proline-
directed kinases such as MAPKs and glycogen synthase 
kinase 3-beta (GSK3-β). Human cancer cells harboring 
oncogenic Ras are often resistant to TGF-β-induced cy-
tostasis, which was thought to result from Erk-mediated 
Smad2/3 linker phosphorylation and Smad nuclear exclu-
sion [39]. However, this effect is debatable and may be cell 
context-dependent [40, 41]. Several reports showed that Erk 
or JNK activation by RTKs leads to strong phosphoryla-
tion of endogenous Smad2/3 in mammalian cells without 
affecting their nuclear accumulation and transcriptional 
activity [42-44]. More recently, three residues in the linker 
region of Smad3 (Thr178, Ser203, and Ser207) were iden-
tified as Erk1/2 phosphorylation sites both in vitro and in 
vivo. Erk-mediated phosphorylation of these sites inhibits 
Smad3 transcriptional activity but does not prevent Smad3 
from entering the nucleus [45], suggesting the existence 
of a yet unknown mechanism for Smad3 inhibition by the 
linker phosphorylation. Adding more complexity, the same 
serine residues (203 and 207) of Smad3 are also targets 
for other kinases. In human breast cancer MCF10CA1h 
cells, both Rho-dependent kinase (ROCK) and p38 MAPK 
phosphorylate Ser203/207 and facilitate, rather than inhibit, 

TGF-β-induced growth inhibition [46]. Our recent study 
indicates that GSK3-β, which is structurally similar to 
MAPKs, selectively phosphorylates Ser203 of Smad3 in 
vivo [47]. We also noticed that, unlike Erk, which primarily 
phosphorylates Smad3 linker in the nucleus ([45] and our 
unpublished result), GSK3-β mainly phosphorylates the 
cytoplasmic Smad3 (our unpublished result). The linker 
phosphorylation by GSK3-β does not seem to affect Smad3 
localization or activity, and its functional role in TGF-β 
signaling is unknown. Together, these findings suggest 
that linker phosphorylation of Smad2/3 can yield distinct 
outcomes depending on the identity of the kinase, the spe-
cific intracellular localization where the phosphorylation 
occurs, the collateral events caused by MAPK activation, 
and other cell type-specific factors (Figure 2).

MAPKs (especially Erk1/2) also phosphorylate the 
linker of Smad1/5, which almost always blocks Smad1/5 
nuclear translocation. As a result, BMP function can be 
suppressed by several signals that activate RTK/MAPK, 
including EGF, fibroblast growth factor (FGF) and insulin-
like growth factor (IGF) [48-50]. Multiple Ser/Thr residues 
in Smad1 linker can be sequentially phosphorylated by Erk 
and then GSK3-β, creating a docking site for the Smad1/5-
specific E3 ubiquitin ligase, Smurf1. Smurf1 binding not 
only causes ubiquitination and degradation of the Smads 
but also occludes their interaction with the nuclear pore 
complex, thereby preventing Smad nuclear translocation 
[50]. As a functional consequence, FGF/MAPK relieves 
BMP-mediated repression to induce neural differentiation 
of Xenopus embryonic cells and rat neural precursor cells 
[51, 52]. Importantly, Wnt signaling, which is known to in-
activate GSK3-β, reduces Smad1 ubiquitination and stabi-
lizes the protein [53]. Together, these studies have provided 
a compelling molecular mechanism for the long-known 
Wnt—| FGF —| BMP axis during embryonic patterning 
and cell differentiation [54]. It is interesting to note that 
MAPK- and GSK3-β-mediated linker phosphorylation has 
not been shown to regulate the protein stability of Smad2/3. 
Such difference between Smad1/5 and Smad2/3 could be 
because of the variation in amino-acid sequences of their 
respective linker regions. A different mode of regulation 
has been observed in prostate cells, in which Erk-mediated 
linker phosphorylation allows BMP-activated Smad1 to 
physically interact with the androgen receptor (AR) and 
act as a co-repressor. This induced binding of Smad1 and 
AR culminates in an antagonism of androgen-stimulated 
prostate cell growth by BMP [55]. Additionally, MH1 
domain phosphorylation of Mad (Drosophila homolog of 
Smad1/5) by the MAPK-like kinase Nemo also leads to 
Mad nuclear exclusion [56].

In addition to R-Smads, MAPKs also phosphorylate and 
regulate the Co-Smad, Smad4, and the inhibitory Smad, 
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Smad7. For example, oncogenic Ras decreases Smad4 pro-
tein stability in an MEK/Erk-dependent manner [57]. JNK 
and p38 seem to preferentially phosphorylate tumor-derived 
mutant Smad4 and promote its proteasomal degradation 
[58]. Erk, JNK, and p38 have all been implicated in the 
transcriptional regulation of Smad7, therefore indirectly 
regulating TGF-β signaling [59-61].

Although FGF often suppresses BMP activity as 
described earlier, these pathways can have synergistic 
functions. In chicken liver, hepatoblast differentiation 
into biliary epithelial cells is induced by BMP-4 and also 
requires an active FGF/MAPK pathway. This collaboration 
of BMP and FGF occurs specifically at certain stages of 
liver development and results in the expression of several 
cell lineage-restricted genes [62]. On the other hand, FGF/
MAPK activity can also be opposed by BMPs. Mice lack-
ing the receptor BMPR1a and/or BMPR1b exhibit defects 
in cartilage development, partly because of an elevation 
in FGF signaling that suppresses chondrogenesis. In the 

growth plate of these mutant mice, both FGFR1 protein 
level and Erk1/2 activity are higher than in wild-type ani-
mals, suggesting inhibition of the FGF/MAPK pathway by 
BMP [63]. In early mouse embryos, limb-bud outgrowth 
is promoted by Shh and FGFs, whereas termination of 
this growth requires BMP-mediated inhibition of FGFs. 
Interestingly, high-level FGF downregulates Gremlin1, 
an antagonist of BMP. Thus, a negative feed-back loop 
is established to tune down FGF signals by indirectly ac-
tivating BMP, which is an ideal way to prevent limb-bud 
overgrowth ([64] and references therein). 

MAPKs phosphorylate a number of nuclear transcrip-
tion factors, many of which can physically interact with 
Smads and regulate TGF-β/BMP responses. The best-
characterized ones in this category are the AP-1 proteins, 
including members of the Jun, Fos, Maf, and ATF sub-
families [65]. Functional interaction between Smad and the 
Jun/Fos family proteins has been widely studied, and their 
relationship can be synergistic or antagonistic depending 

Figure 2 TGF-β/BMP and RTK/Ras-activated MAPK and PI3K/Akt pathways. The MAPK and PI3K/Akt pathways impinge on 
TGF-β/BMP signaling primarily by modulating Smad functions. MAPKs and Akt bind and/or phosphorylate R-Smads to control 
their intracellular distribution and transcriptional activity. MAPKs and Akt also phosphorylate and regulate a variety of Smad 
binding partners in the nucleus, indirectly affecting the Smads.
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on their target genes and other binding partners [66-72]. 
Recently, inhibition of MafA-dependent transcription by 
a TGF-β-activated Smad complex was reported [73]. The 
ATF proteins (ATF1, ATF2, and ATF3), which are acti-
vated by p38 MAPK, have also been shown to bind Smads 
and participate in a variety of TGF-β-regulated activities 
[74-78]. It is noteworthy that several of the Jun and ATF 
sub-family members are themselves Smad target genes, 
thus establishing the so-called “self-enabling” or “self-
disabling” TGF-β responses [75,79-81].

TGF-β and the PI3K/Akt pathway

The most widely studied PI3K, p110α/p85, converts 
phosphatidylinositol-4,5-bisphosphate (PIP2) to phos-
phatidylinositol-3,4,5-triphosphate (PIP3). PIP3 is a potent 
signaling molecule that recruits and regulates a number of 
downstream effectors, the most important one being the 
serine/threonine kinase Akt (also known as PKB). RTK/
Ras, integrin, and several other signals can activate the 
PI3K/Akt pathway, which usually promotes cell survival, 
growth, and motility through Akt-mediated phosphoryla-
tion of a slew of relevant proteins. Consistent with these 
physiological functions, oncogenic mutations and protein 
overproduction of PI3K and Akt are commonly found in 
human cancers. The activity of PI3K is counteracted by the 
tumor suppressor protein PTEN (phosphatase and tensin 
homolog deleted on chromosome 10), which is a lipid 
phosphatase that removes the phosphate group from the 
3′ position of the inositol ring of PIP3, thereby blocking 
Akt activation. Loss-of-function mutations of PTEN also 
occur at a high frequency in human cancers (reviewed by 
[23, 82-84]). 

The PI3K/Akt activity is known to alleviate TGF-β-in-
duced apoptosis and/or cell cycle arrest in multiple types 
of cells in response to insulin, IGF, interleukin (IL)-6, and 
viral proteins [85-89]. Interestingly, Smad3, but not Smad2, 
seems to be the primary target of inhibition by PI3K/Akt, 
consistent with the indispensable function of Smad3 in 
mediating the pro-apoptotic effects of TGF-β [6].

Several mechanisms have been proposed by which PI3K/
Akt restricts Smad3 activity (Figure 2). Studies using phar-
macological inhibitors of PI3K or the downstream kinase 
mammalian target of rapamycin (mTOR) have implicated 
PI3K/Akt in regulating Smad3 activation by the TGF-β 
receptors, although conflicting results have been observed 
such that PI3K/Akt could either enhance or attenuate 
TGF-β responses [90, 91]. Exactly how PI3K/Akt modu-
lates Smad3 activation remains a question unanswered. 
Other reports have suggested a “Smad3-trap” model for 
the anti-TGF-β effects of Akt in protecting liver cancer 
cells from cell death [92, 93]. PI3K-activated, plasma 

membrane-anchored Akt can physically sequester Smad3 
and block its nuclear translocation in a kinase-independent 
manner, without affecting the C-terminal phosphorylation 
(activation) of Smad3. However, this mechanism may 
be cell type-specific and dependent on the stoichiometry 
between the Akt and Smad3 proteins, as Akt can also 
facilitate Smad3 function (see below), and PI3K/Akt has 
been shown to be required for the nuclear accumulation 
of BMP-activated Smad1 [94]. A third way for PI3K/Akt 
to debilitate Smad3 is through the inactivation of certain 
nuclear factors that are necessary for Smad3 function. For 
instance, activated Smad3 directly interacts with the FoxO 
family of transcription factors and they are simultaneously 
recruited to the promoter of p21 as an integral step of the 
TGF-β-induced cytostatic program [95]. However, both 
extracellular (e.g. IGF) and intracellular (e.g. Bcr-Abl) 
signals can defy this activity of TGF-β by enhancing Akt-
mediated phosphorylation of FoxO, which forces FoxO out 
of the nucleus and foils p21 induction [95,96].

On the flip side, the PI3K/Akt pathway is also subjected 
to TGF-β/BMP regulation. Akt activity increases in re-
sponse to TGF-β treatment, which seems to be required for 
a variety of TGF-β-induced activities, such as cell migra-
tion of HER2-expressing breast cancer cells [97], EMT of 
normal mammary epithelial cells [98, 99], cell survival of 
mouse hippocampal neurons and mesenchymal cells [100, 
101], as well as growth stimulation of certain fibroblasts 
[102]. BMP also activates Akt to induce osteoblast differen-
tiation [94]. It is to be noted that Akt activation by TGF-β/
BMP is cell type-dependent and very likely indirect, often 
requiring either MAPKs or autocrine actions of secreted 
molecules. 

Alteration of PTEN function represents another route 
for TGF-β/BMP to influence Akt activity. TGF-β has been 
shown to transcriptionally downregulate PTEN in Smad4 
null pancreatic cancer cells, which, again, seems to rely 
on the function of the Ras/MAPK pathway [103]. In the 
same cells, TGF-β elicits EMT by dislodging β-catenin 
from the adherence junctions, a process that involves 
TGF-β-dependent PTEN dissociation from β-catenin and 
Akt activation [104]. On the other hand, TGF-β/Smad can 
reduce Akt activity in hematopoietic cells by inducing the 
expression of SHIP (SH2 domain-containing 5′ inositol 
phosphatase), a lipid phosphatase that removes the 5 posi-
tion phosphate from PIP3 [105].

BMP also regulates PTEN activity. In one report, BM-
PR1a deletion in mouse intestine caused elevated PTEN 
phosphorylation (indicative of PTEN inactivation) and 
therefore Akt hyperactivation, suggesting a positive cor-
relation between BMP signaling and PTEN activity. As a 
result, those mutant mice developed polyposis that was 
reminiscent of human diseases with perturbed functions 
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of BMPR1a and PTEN [106,107]. In addition, BMP-2 
treatment of MCF7 human breast cancer cells slightly 
increased the protein level and stability of PTEN [108]. In 
contrast, Beck and Carethers [109] noticed that long-term 
BMP-2 treatment of Smad4-null SW480 colon cancer cells 
could decrease the mRNA level of PTEN, which requires 
Ras/Erk activity. It is yet to be shown whether the above 
observations are cell type- and tissue-specific; and more 
work is needed to understand how TGF-β/BMP and PTEN 
are connected at the molecular level. 

TGF-β and the Wnt pathway

The Wnt proteins are secreted, lipid-modified signaling 
molecules that have diverse roles in regulating cell prolif-
eration, differentiation, migration, survival, and so on. The 
canonical Wnt signaling is mediated by the transcription 
co-factor β-catenin, which undergoes nucleocytoplasmic 
shuttling and is also essential for the formation of adher-
ence junctions between cells through its interaction with 
the cadherins. In the absence of Wnt, the level of cytosolic 
β-catenin is controlled by the so-called “β-catenin destruc-
tion complex”, comprising Axin, adenomatous polyposis 
coli (APC), GSK3 and casein kinase 1 alpha (CKIα). In 
this complex, Axin scaffolds all the other members by di-
rect binding to facilitate CKIα- and GSK3-mediated serial 
phosphorylation and subsequent polyubiquitination/degra-
dation of β-catenin. This constitutive turnover of β-catenin 
keeps the Wnt pathway in an “OFF” state. When the Wnt 
ligand binds to its receptor Frizzled (Fz) and co-receptor 
LRP5/6, the signal is transduced to the β-catenin destruc-
tion complex through an intracellular protein Dishevelled 
(Dvl), leading to Axin downregulation, GSK3 inactivation 
and β-catenin stabilization. The cytosolic accumulation of 
β-catenin favors its translocation into the nucleus, where it 
binds the Lef/TCF (lymphocyte enhancer factor/T-cell tran-
scription factor) family of transcription factors and turns 
the Wnt pathway on. Given the power of Wnt signaling to 
stimulate cell proliferation, hyperactivation of this pathway 
often contributes to carcinogenesis [110-113]. 

The cross-talk between TGF-β/BMP and Wnt pathways 
has been known for a long time and is probably the most 
extensively studied. The two pathways are intertwined 
throughout the life of an animal, and molecularly they 
interact at multiple levels. First, TGF-β/BMP and Wnt 
reciprocally regulate their ligand production, which is 
critical for establishing extracellular gradients of these 
morphogens during embryonic development. Second, 
the best-defined venue of TGF-β/Wnt cross-talk is in the 
nucleus, where the Smad/β-catenin/Lef protein complex 
regulates a host of shared target genes, often in a synergistic 
manner. Third, recent research has identified cytoplasmic 

interactions between components of these pathways as 
novel mechanisms for fine-tuning their respective signal-
ing. In fact, this multi-level paradigm also holds true for 
the cross-talk between TGF-β and other pathways such 
as Hh, Notch, IL, and interferon-gamma (IFNγ), which 
will be discussed later (Figures 3 and 4). Moreover, the 
molecular details of such cross-talk are often conserved 
across species, further highlighting the biological relevance 
of integrated signaling. 

Mutual regulations between TGF-β/BMP and Wnt 
ligands are prevalent and important during early develop-
ment, but are also seen in adult tissues. In chicken embryos, 
Wnt-8c induces the expression of Nodal (a TGF-β fam-
ily member) in a β-catenin-dependent manner, which is 
required for the establishment of the left–right body axis 
[114]. In Xenopus, BMP2/4 regulate Wnt-8 expression and 
they cooperatively pattern the mesoderm [115], whereas 
BMP-2 downregulates Wnt-7a and β-catenin in chicken 
embryonic mesenchymal cells in a p38-dependent man-
ner, leading to enhanced chondrogenesis [75]. Oncogenic 
β-catenin has been implicated in promoting BMP-4 produc-
tion in human colon cancer cells [116]. However, Kosinski 
et al. [117] showed that Wnt activity overlaps with the 
expression of a number of BMP antagonists at the bottom of 
colon crypts, which is believed to be the niche for intestinal 
stem cells. This study suggests that one of the mechanisms 
by which Wnt signaling maintains the intestinal stem cell 
population is through inhibition of the opposing activity 
of BMP. In Xenopus embryos, Wnt and TGF-β co-regulate 
the expression of connective tissue growth factor (CTGF). 
Interestingly, CTGF directly interacts with the BMP-4 and 
TGF-β1 ligands in the extracellular space, which blocks 
the ligand–receptor binding of BMP but enhances that 
of TGF-β [118]. CTGF is also co-regulated by Wnt and 
BMP in mesenchymal stem cells, and its induction stunts 
the osteoblastic differentiation driven by BMP [119]. 
Another Wnt target, Cripto, is a TGF-β/Nodal co-receptor 
that plays important roles, both positive and negative, in 
transmitting TGF-β/Nodal signals during development 
and in cellular transformation as well as tumorigenesis 
(reviewed in [120]). 

Many development-relevant genes in several model 
systems have been documented to be co-regulated by TGF-
β/BMP and Wnt pathways at the transcription level, includ-
ing, but not limited to, Ultrabithorax, Goosecoid, Siamois, 
Xnr, Chordin, Cerberus, Crescent, and Noggin [121-125]. 
During the early stage of vertebrate development, TGF-
β(Nodal)/BMP and Wnt signaling play critical roles in 
the formation of the Spemann’s organizer, an embryonic 
dorsal signaling center that controls the movement and 
fate of neighboring cells [126]. In Xenopus, the organizer 
genes Xtwn and Xsia are synergistically controlled by both 
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activin/Vg1-like (members of the TGF-β subfamily) and 
Wnt activity, and inactivation of either pathway leads to 
significant reduction in Xtwn transcription [127]. The two 
pathways were found to converge at the promoter of Xtwn, 
where Smad4, β-catenin, and Lef1 form a complex and 
bind to adjacent regulatory elements to co-regulate Xtwn 
expression. The interaction between Smad4 and β-catenin 
is mediated by Lef1, and their cooperation was soon cor-
roborated in mammalian cells [128]. Interestingly, not all 
Wnt target genes in the same organizer cells are regulated 
by Smad4 [127], and neither Xtwn nor Xsia is affected 
by BMP, which also signals through Smad4 [129]. These 
findings suggest that cross-talk between the transcription 
(co)factors of different pathways is target gene-specific 
and is dependent on the context of target gene promoters 
as well as other relevant co-factors (Figure 3). 

Besides Xtwn and Xsia, several other genes are jointly 
regulated by Smads and β-catenin/Lef in a similar manner 

as described above. During mouse embryonic development, 
Wnt and BMP collaborate to upregulate the Emx2 and Msx2 
genes that play important roles in neural development, 
and critical elements in the promoters of both genes were 
found co-occupied by the Smad/β-catenin/Lef1 complex 
[130, 131]. In human embryonic carcinoma cells, Msx1, 
Msx2, and Id2 were synergistically induced by Wnt3-A 
and BMP-4 [132]. In mouse gastric cancer cells, the pro-
tumorigenic protein gastrin is activated by both Wnt and 
TGF-β [133]. Interestingly, although the promoter of gas-
trin contains both Smad and Lef/Tcf binding sites, either 
site alone is sufficient to recruit the Smads/β-catenin/Tcf4 
complex. Smads and β-catenin/Tcf4 can function as mutual 
co-factors, and the interaction between these proteins is 
thought to be stabilized by the p300 co-activator protein 
[133]. The implication of cooperative TGF-β and Wnt 
signaling in tumor progression has recently been examined 
by Labbé et al. [134], who identified several shared target 

Figure 3 TGF-β/BMP and the Wnt pathway. The most common format of TGF-β/Wnt cross-talk occurs in the nucleus, where the 
Smad and Lef/β-catenin synergistically regulate a set of shared target genes. TGF-β/BMP and Wnt can determine the ligand 
production of each other (see text and Figure 4). In addition, protein interactions in the cytoplasm (such as Smad7-Axin binding) 
also link the two pathways in various settings.

R-Smad

R-Smad

Smad4

Smad7

R-Smad
Smad4

Cytoplasm

TGF-β/BMP
Wnt

CKlα

β-catenin

Axin

GSK3

Co-factor

Lef

Nucleus

DvI



 Cell Research | Vol 19 No 1 | January 2009

TGF-β and other pathways cross-talk
78
npg

genes of the two pathways in normal mouse epithelial 
cells, such as Ctgf, Robo1, Gpc1, and Inhba. Importantly, 
when analyzed in transgenic mouse models, many of these 
genes were found to be overexpressed in breast and colon 
tumors with active TGF-β and Wnt signaling. Controlled 
inactivation of the TGF-β pathway in these animals resulted 
in weakened expression of some of the above genes as well 
as delayed tumor formation, indicating that TGF-β and Wnt 
can synergistically promote tumorigenesis. 

An unusual way of Smad3-β-catenin cross-talk has been 
observed in human mesenchymal stem cells (hMSCs). 
TGF-β and Wnt cooperatively stimulate the proliferation 
of these cells and inhibit their differentiation into the os-
teocytic and adipocytic lineages, thereby supporting hMSC 
self-renewal [135]. TGF-β stimulation of hMSCs leads to 
a rapid co-translocation of Smad3 and β-catenin into the 
nucleus, which is a unique feature of this cell type and 
is required for the above functions of TGF-β. Moreover, 
Smad3 and β-catenin co-regulate a cohort of genes in these 
cells that are otherwise not known to be TGF-β or Wnt 
targets, such as the Src family tyrosine kinase BLK. The 
functions of these genes in TGF-β/Wnt-regulated hMSC 
self-renewal remain to be determined [135]. 

In contrast to TGF-β, BMP impedes Wnt-induced 
β-catenin translocation and cell proliferation in mouse 
MSCs as a result of Smad1 interaction with Dvl-1 in the 
cytoplasm [136]. Axin also interacts with Smad proteins in 
the cytoplasm. Overexpression studies suggest that Axin 
can facilitate TGF-β signaling by presenting Smad3 to the 
type I TGF-β receptor [137]. However, our findings indicate 
that endogenous Axin negatively regulates TGF-β function 
by promoting Smad3 basal degradation in a GSK3-β-de-
pendent and Wnt-independent fashion [47].

Several lines of evidence have suggested perplexing 
roles of Smad7 in connecting the TGF-β and Wnt path-
ways. As an inhibitory Smad, Smad7 primarily functions to 
downregulate the TGF-β/BMP receptors and hence R-Smad 
activation through the recruitment of E3 ubiquitin ligases, 
Smurf1 and Smurf2 [3]. Smad7 itself is induced by TGF-β/
BMP and undergoes nucleocytoplasmic shuttling. Smad7 
can directly bind β-catenin and promote β-catenin degrada-
tion by Smurf2-mediated ubiquitination, thereby reducing 
Wnt activity. As a result, mice carrying a Smad7 transgene 
experience abnormal epidermal development, which may 
be owing to inefficient Wnt signaling in the epidermal stem 
cells [138]. However, a recent report described a conflicting 
scenario that Smad7 could bind to Axin, disassemble the 
β-catenin destruction complex, prevent Smurf2 recruit-
ment, and stabilize β-catenin as well as the adherence junc-
tions [139]. Moreover, Smad7-Axin interaction was also 
reported to cause Smad7 ubiquitination and degradation 
through the Axin-assisted action of an E3 ubiquitin ligase 

called Arkadia [140]. Finally, Edlund et al. [141] observed 
that TGF-β could trigger β-catenin nuclear translocation 
in a Smad7-dependent manner in human prostate cancer 
PC-3U cells. The physical interaction between Smad7 and 
β-catenin was shown to be important for TGF-β-induced, 
β-catenin-regulated apoptotic responses in those cells. The 
most probable explanation for these seemingly opposite 
results is that they represent different aspects of Smad7, 
Axin, and β-catenin functions that are only visible in certain 
cell types under specific experimental conditions. 

TGF-β and the Hh pathway

Like the Wnt proteins, Hedeghog (Hh) is a family of 
lipid-modified, secreted molecules that participates in a va-
riety of cellular functions, functioning as a potent mitogen 
and morphogen. In flies, Hh binds the membrane-bound 
receptor Patched (Ptc) and relieves its suppression on an-
other membrane protein called Smoothened (Smo). This 
leads to, through a series of intracellular events, activation 
of the signal transducer, Ci, which is otherwise processed to 
a repressor form (Cirep) by proteolysis in the cytoplasm of 
resting cells. Activated Ci (Ciact) joins with the co-activator 
protein CBP in the nucleus and controls Hh target genes. 
Three Hh proteins are produced in mammals: sonic, desert, 
and Indian hedgehog (Shh, Dhh, and Ihh), with Shh being 
the best characterized. The mammalian homologs of Ci 
are the Gli proteins (Gli1, Gli2, and Gli3). The Hh signal 
transduction is well conserved during evolution, and aber-
rant Hh signaling leads to developmental defects as well 
as tumorigenesis [142-144].

During development and oncogenesis, Hh and TGF-β/
BMP pathways can directly regulate key components of 
each other. In the wing imaginal disc of flies, Ci can either 
suppress or induce the transcription of Dpp (Decapentaple-
gic, the fly version of BMP) depending on the availability 
of Hh. The different forms of Ci (activator or repressor) 
bind to the same regulatory elements of the Dpp promoter, 
yet with probably distinct co-factors [145-147]. Luciferase 
reporter analysis also revealed potential binding sites for 
the Gli proteins in the promoters of human BMP-4 and 
-7 genes [148]. Shh provokes an invasive phenotype of 
cultured gastric cancer cells, which is thought to be medi-
ated by Shh-induced TGF-β ligand production as well as 
TβRI expression [149]. During bone development, Shh 
upregulates TGF-β2 to inhibit hypertrophic chondrocyte 
differentiation [150]; whereas Shh/Gli2-induced BMP-2 
expression is responsible for osteoblast differentiation 
[151]. On the other hand, notochord-derived activin-βB 
(as well as FGF) represses Shh expression and permits 
proper development of the pancreas in chicken embryos 
[152]. Dorsalin-1, a BMP family member, has been shown 
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to compete with Hh and repress the development of muscle 
pioneer cells in zebrafish [153].

Smads regulate the Gli genes and modulate Hh activity. 
In several types of cells, TGF-β/Smad3 directly induces 
Gli2 transcription, which in turn upregulates Gli1. Of par-
ticular relevance, in pancreatic cancer cells that are resistant 
to Hh inhibition, blocking TGF-β function could attenuate 
Gli-mediated Hh signaling and reduce cell growth [154]. In 
developing cerebellum, Shh stimulates the proliferation of 
granule cell precursors (GCPs) [155], whereas BMPs have 
the opposite functions [156]. BMP-2 and -4, but not BMP-7, 
are expressed in the same group of cells and antagonize the 
proliferative function of Shh specifically through Smad5. 
Interestingly, Shh pathway components such as Smo and 
Gli1 can be downregulated by BMP treatment, probably 
through direct or indirect transcriptional repression [157, 
158]. In addition, the BMP-2 target gene TIEG-1 (TGF-β 
inducible early gene-1) blocks Gli-mediated transcription 
of N-myc, an oncogene and essential target of Shh in GCPs, 
thereby inhibiting cell proliferation and promoting cell 
differentiation [158].

Several Smad proteins were shown to bind to a C-termi-
nally truncated form of Gli3, which is produced in human 
diseases and may resemble the endogenously expressed 
Glirep. Despite the unknown function of this Smad-Gli3 
complex, TGF-β or BMP treatment could dissociate Smads 
from the trunctated Gli3, which may allow the Gli repressor 
to antagonize Shh signaling [159].

Our knowledge about the molecular nature of the TGF-β/
Hh interaction is still limited. However, in view of the 
similarity between the Hh and Wnt pathways [143, 160], 
more sophisticated cross-talk between Hh and TGF-β is 
expected.

TGF-β and the Notch pathway

The Notch signaling plays integral roles in cell fate 
determination and is activated in a cell contact-dependent 
manner. The Notch protein (receptor) of one cell binds 
the transmembrane ligand, Jagged or Delta-like, that is 
expressed on the surface of an adjacent cell. Such ligand 
engagement triggers the shedding of the ectodomain of 
Notch proteins and further proteolytic cleavage that releases 
the Notch intracellular domain (NICD). This NICD frag-
ment translocates into the nucleus and activates the CSL 
family of transcription factors. This NICD-CSL complex, 
in conjunction with other co-factor proteins, then drives the 
expression of Notch target genes, including Hes, Herp, and 
Hey, which encode the basic helix-loop-helix (bHLH) tran-
scription factors necessary for mediating the downstream 
effects of Notch [161]. 

TGF-β can induce the expression of Notch ligands. In 

Ciona embryos, Nodal induces the local expression of 
Delta2 to specify the fate of notochord cells [162, 163]. Jag-
ged has been shown to be a TGF-β target gene in multiple 
types of mammalian cells. Smad3-dependent expression of 
Jagged1 and Hey1 seems to be critical for TGF-β-induced 
EMT in cells derived from several organs [164]. Jagged1 
upregulation also contributes to TGF-β-stimulated p21 
expression and cytostasis in epithelial cells [165]. Induction 
of Jagged and Hes1 by TGF-β seems particularly evident in 
diabetic patients with nephropathy, which might be relevant 
to the pathogenic process [166].

TGF-β/BMP and Notch synergistically regulate their 
common target genes in many cell types. In chicken em-
bryos and in mouse myofibroblasts with active TGF-β 
and Notch signaling, Smad3 and NICD directly interact 
and form a complex with CSL that binds to specific DNA 
sequences as found in the promoter of Hes-1 [167]. A simi-
lar cooperation is seen in mouse regulatory T cells (Treg) 
in that the Notch1 ICD not only interacts with activated 
Smad3 and facilitates its nuclear translocation [168], but 
also remains bound with pSmad3 in the nucleus, where 
they jointly upregulate the transcription factor Foxp3 
[169]. Moreover, the membrane-bound form of TGF-β 
expressed in Treg cells activates the Notch pathway in the 
target cells, an event necessary for Treg/TGF-β-regulated 
immunosuppression [170]. BMP inhibits myogenic dif-
ferentiation of C2C12 cells, and this function requires an 
intact Notch pathway as well as Smad1-regulated induction 
of Notch target genes Hes-1 and Hey-1 [171]. In mouse 
neuroepithelial cells, BMP-2-activated Smad1 joins with 
NICD with the aid of p300 to regulate the expression of 
Hes-5 and Hesr-1 [172]. Similarly, the Notch target gene 
Herp2 is positively regulated by BMP in endothelial 
cells. However, Herp2 in turn suppresses the expression 
of the BMP target gene, Id1, which is required for BMP-
stimulated endothelial cell migration. Consequently, the 
transcriptional synergy of the two pathways in fact leads 
to functional antagonism [173].

Notch can also act against TGF-β/BMP. Activated 
Notch1 has been shown to inhibit the anti-proliferative 
function of TGF-β by sequestering the p300 co-factor from 
Smads [174]. Notch4 ICD can interact with Smad2/3/4 
and inhibit TGF-β-regulated cytostasis, although it does 
not interfere with Smad2/3 activation [175]. Very recently, 
Carlson et al. [176] reported an interesting antagonism 
between TGF-β and Notch in the muscles. In old muscles 
with failing ability to regenerate, high levels of TGF-β 
ligand and activated Smad3 were observed in association 
with decreased activity of Notch. Re-activation of Notch 
could rejuvenate the muscle cells by preventing Smad3 
binding to the promoters of p15, p16, p21, and p27, key 
regulators of cell cycle and senescence that contribute to 
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the aging of muscle [176]. A mutual inhibition of Notch3 
and TGF-β was also seen during the differentiation of 
10T1/2 fibroblasts into smooth muscle-like cells [177]. 
BMP and Notch signaling can also have opposing effects on 
prostate development in mice. Deletion of BMP7 in mouse 
urogenital cells led to excessive branching morphogenesis 
and elevated Notch activity in vivo, whereas BMP7 treat-
ment decreased Hes1 expression in vitro. Therefore, BMP 
and Notch are antagonistic in this setting, although the 
underlying mechanism is not clear [178].

TGF-β and the IL, TNFβ, and IFN-γ pathways

ILs, tumor necrosis factor-alpha (TNFα), and IFNγ 
are key regulators of immune functions, inflammatory 
responses, and many other physiological/pathological 
activities. These cytokines collectively signal through the 
Jak/STAT (signal transducers and activators of transcrip-
tion) pathway and the NF-κB pathway to regulate multiple 
aspects of cell survival, proliferation, and differentiation. 
When ILs and IFNγ bind their cognate receptors, the Jak 
kinase becomes activated and phosphorylates the STAT 
proteins, allowing for STAT dimerization and nuclear 
translocation. The NF-κB proteins, including p50, p52, 
RelA/p65, and RelB, exist as dimers and are normally kept 
inactive by the IκB protein. Extracellular stimuli such as 
TNFα can trigger the degradation of IκB thereby freeing 
the NF-κB complexes. Activated NF-κB proteins enter 
the nucleus and, like the STATs, function as transcription 
factors to regulate a wide range of target genes involved 
in the aforementioned processes [179-183]. TGF-β, with 
its diverse and crucial functions in the immune system, 
inevitably overlaps with ILs, TNFα, and IFN-γ in many 
signaling events (reviewed by [8, 184]). TGF-β regulates 
the bioavailability of these cytokines as well as their signal 
transduction. In turn, TGF-β activity is modulated by these 
factors in various ways.

TGF-β potently suppresses T cell proliferation by in-
hibiting IL-2 production via Smad3 [185]. TGF-β/Smad3 
also selectively blocks the expression of IL-2 target genes 
involved in cell proliferation, without affecting other IL-2 
targets that support cell survival [186]. However, TGF-β/
Smad3 also induces the expression of IL-2 receptor [187]. 
In addition, TGF-β probably synergizes with IL-2/STAT5 
signals to upregulate Foxp3, an essential transcription 
factor for the differentiation of induced Treg (iTreg) cells 
[188-191]. These results therefore suggest a two-faced 
relationship between TGF-β and IL-2 in T cells, depend-
ing on the specific developmental and functional status of 
the cells. 

IL-11 has been identified as a TGF-β/Smad target gene, 
and it plays a unique part in mediating the facilitatory ef-

fects of TGF-β during breast cancer bone metastasis [2, 192, 
193]. A related finding is that osteoblast-derived TGF-β, 
probably in conjunction with AP-1 and NF-κB, stimulates 
the expression of IL-8 in human cancer cells [194].

TGF-β and IL-6 signaling cooperate in promoting the 
differentiation of Th17 cells, a new type of T helper cell, 
although the molecular mechanisms for such cooperation 
are still elusive ([8] and references therein). IL-6 treatment 
of human renal proximal tubular epithelial cells promotes 
TGF-β receptor internalization via the endosomal (signal-
ing) pathway as opposed to the caveolar (degradation) 
pathway, thereby stabilizing the receptor and augmenting 
Smad3 activity [195]. In contrast, Smad2-mediated inhi-
bition of STAT3 activation by IL-6 has been observed in 
human intestinal epithelial cells [196].

In mice with T-cell-specific deletion of TβRII, a higher 
amount of IFNγ is produced by the CD4+ and CD8+ T cells, 
which correlates with an altered pattern of T-cell differen-
tiation and suggests an inhibition of IFNγ expression by 
TGF-β [197, 198]. In line with this, TGF-β secreted from 
tumor cells directly inhibits the production of IFNγ and 
several other factors by cytotoxic T cells, providing an 
important mechanism for the escape of tumor cells from 
immune surveillance [77].

Conversely, IFN-γ antagonizes TGF-β activity in many 
cellular responses, for which Smad7 induction by Jak1/
STAT1 seems to be a major mechanism [199]. On skin 
injury, loss of IFN-γ correlates with a reduction in the 
Smad7 level and an increase in TGF-β ligand production 
and Smad2 activation, which favors the wound-healing 
process [200]. Smad7 is also a target of ILs and TNFα 
(see below). In mouse gastric epithelial cells, hyperactive 
gp130 (the receptor for IL-6) upregulates Smad7 through 
activation of STAT3, and subsequent inhibition of TGF-β 
by Smad7 leads to gastric adenoma growth in the animals 
[201]. IL-7 signaling in pulmonary fibrosis fibroblasts also 
induces Smad7 expression via Jak1/STAT1 and inhibits the 
pro-fibrotic functions of TGF-β [202].

TGF-β/Smad and NF-κB antagonize each other in 
inflammatory and adaptive immune responses [203]. NF-
κB/RelA-mediated Smad7 induction inhibits Smad2/3 
activation and allows cells to respond to a variety of pro-
inflammatory stimuli, including TNF-α and IL-1β [204]. 
IL-1β has also been shown to alleviate TGF-β-induced 
growth arrest and transcriptional responses in epithelial 
cancer cells and hematopoietic cells without conscripting 
Smad7. Instead, IL-1β activates TAK1, an MAPKKK 
known to be activated by TGF-β and hence the name. 
TAK1 directly interacts with Smad3 in response to IL-1β 
and modulates Smad3 activity (probably by phosphoryla-
tion) without affecting its C-terminal phosphorylation or 
nuclear translocation [205].



www.cell-research.com | Cell Research

Xing Guo and Xiao-Fan Wang
81

npg

NF-κB is also subject to TGF-β regulation. For example, 
TGF-β treatment of mouse intestinal epithelial cells de-
creases NF-κB activity by downregulation of the Toll-like 
receptor 2 (TLR2) protein and subsequently lowers IL-6 
production. In IL-10 null mice, owing to severely impaired 
TGF-β signaling, bacterial infection leads to persistent NF-
κB activation, which does not involve Smad7 induction 
[206,207]. On the other hand, an additive effect of Smad 
and NF-κB/RelA on the expression of type VII collagen 
(COL7A1) has been reported [208]. Smads have also been 
shown to bind and cooperate with NF-κB/p52 to upregulate 
JunB [209].

In Xenopus embryos, the leukemia inhibitory factor 
(LIF), which signals through gp130 and STAT3, inhibits 
activin/Smad2 activity [210]. On the other hand, BMP2 and 
LIF (or IL-6) synergistically induce astrocyte formation 

from mouse neural progenitor cells. In response to these 
ligands, Smad1 and STAT3 form a complex with p300 on 
the promoter of astrocyte-specific genes such as GFAP 
and co-direct cell differentiation [211]. In addition, BMP-
induced Id expression provides a permissive environment 
for LIF to support self-renewal of the ES cells [212]. 

Concluding remarks 

With a growing list of new regulatory factors and targets 
being identified, the TGF-β pathway has been interwoven 
into the vast network of cell signaling. Countless experi-
ments performed in distinct systems and/or with different 
approaches have provided all sorts of answers as to how 
the TGF-β/BMP pathway interacts with the rest of this 
signaling network. Sometimes these studies show contra-

Figure 4 A simplified and unified view of the multi-level cross-talk. TGF-β/BMP communicates with other signals at several levels. 
Physical interactions between pathway components, both in the cytoplasm and in the nucleus, can lead to protein redistribu-
tion and/or post-translational modifications, and eventually changes in target gene expression. Often the ligands themselves, 
as well as certain extracellular regulators of the ligands, are transcriptional targets of other pathways. All these events are 
context-dependent. 

TGF-β/BMP

TF

Ligand

R-Smad
Cytoplasmic

factors

Cyloplasm

Nucleus

R-Smad

Co-factor



 Cell Research | Vol 19 No 1 | January 2009

TGF-β and other pathways cross-talk
82
npg

dictory results that are not easily reconcilable. Although 
such discrepancies could have arisen from the variations 
of experimental conditions, they may also reflect the true 
adaptability that an organism must possess to survive in a 
constantly changing environment. In this sense, signaling 
cross-talk between different pathways creates a compre-
hensive view of the outside world, so that the cell can 
orchestrate these pieces of information and respond in an 
accurate, efficient, and balanced manner.

The core concept of TGF-β signaling cross-talk is the 
context dependency. It is clear from all the above discus-
sions that no simple rule can be easily generalized to 
describe how TGF-β interacts with any other signaling 
cascade. All experimental data should be interpreted with 
specific confinement parameters, including cell type, devel-
opmental stage, physiological/pathological status, protein 
intracellular localization, nature of modifying enzymes, 
co-factors, identity of targets, and so forth. 

It should also be noted that cross-talk between pathways 
can be direct or indirect, unidirectional or bidirectional, and 
often occurs as part of a feed-back loop. On the other hand, 
synergy or antagonism can also result from independent 
inputs that do not cross-talk. Therefore, in-depth mecha-
nistic studies are necessary to distinguish the cause from 
the consequence and to identify the specific convergence 
point of the pathways (Figure 4). 

The outcome of any signaling cross-talk is an integrated 
and quantitative reflection of all individual input signals, 
which should be kept within a physiologically relevant 
range. Otherwise, distorted artifacts may occur. With the 
availability of techniques such as RNAi and gene targeting, 
some of the earlier conclusions drawn from experiments 
solely dependent on overexpression and dominant-negative 
strategies warrant re-evaluation. 

Owing to space limit, several other pathways that func-
tionally interact with TGF-β signaling are not covered in 
this review, including the nuclear receptor and apoptosis 
pathways. On the other hand, recent literatures have sug-
gested some new areas that are interconnected with TGF-β 
activity, such as energy metabolism (glucose uptake/con-
sumption, AMPK and mTOR signaling) and NO (nitric ox-
ide) signaling. In addition, the recent discovery that TGF-β/
BMP/Smad signaling also regulates microRNA expression 
has pointed out a path toward yet another unexplored ter-
ritory of TGF-β research [213]. It can be envisioned that 
macro-scale screening/modeling in combination with cur-
rent techniques in molecular biology, biochemistry, genet-
ics, structural biology, and bioinformatics will reveal a good 
number of new signaling partners of TGF-β and greatly 
assist the elucidation of many fundamental mechanisms 
regarding TGF-β function and regulation.
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