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Introduction
Biomedical research is increasingly enamored with the promise of translational medicine. In
an era of increasing costs and difficulties in drug discovery, the importance is now
heightened for bioinformatics to advance and make more efficient this process of
translational medicine (1). Here we discuss the potential role for translational bioinformatics
to address current and future needs specifically in the field of transplantation, a field with
continued unmet diagnostic and therapeutic needs.

Emergence of Translational Bioinformatics
The editorial board of the recently launched Journal of Translational Medicine (JTM)
recently confessed that they are baffled by reviewers’ comments when they dismiss
translational manuscripts with comments such as “not hypothesis-driven” or “not
mechanistic” (2). The confession from the editorial board of JTM underscores the general
acknowledgement that traditional “hypothesis-driven research alone cannot meet the needs
of translational medicine”(2).

This is clearly evident as the number of Food and Drug Administration (FDA) approved
drugs has been relatively constant to about 20 drugs per year, except for a brief increase in
the mid 1990’s as a consequence of the Prescription Drug User Fee Act (PDUFA) in 1992
(3), amid an increase in the cost of drug discovery from $138 million in 1975 to $1.3 billion
in 2006 and more than 15 years needed on average in developing a single drug (4). In fact,
an analysis of more than 1200 drugs and molecules approved by FDA since 1950 showed
that the rate of new drug production of a pharmaceutical company follows a Poisson
distribution and is constant (about 2–3 drugs per year at most). This constant rate of output
is often blamed on the traditional hypothesis-driven research model, primarily because
hypotheses derived from complex experimental models often do not translate to human
pathology. On the other hand, we must also keep in mind that the research model is one of
the factors affecting the drug approval rates. For instance, drug approval rates are also
affected by the regulatory process, which is independent of a research model.

Nowhere is this problem more acute than in the field of transplantation (Fig. 1). Although
short-term survival rates of grafts have increased, long-term graft survival rates have not
changed much (5). Five year graft survival for transplanted organs varies from 43% for lung
to 78% for kidney, which highlights the need for better understanding of post-transplant
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injury mechanisms. In addition, there are few available non-invasive diagnostic tests for
monitoring the long-term care of transplant patients.

In the last two decades, a number of high throughput technologies that enable simultaneous
quantification of molecular states of tens of thousands of genes and proteins inexpensively
have been made available. These technologies are constantly improving the resolution and
coverage of molecular profiling by allowing identification of every Single Nucleotide
Polymorphism (SNP) and transcript in a genome. Furthermore, the cost of these high
throughput technologies is rapidly falling. For instance, using the next-generation
sequencing a whole genome is expected to be less than $1000 in the near future from over
$30,000 per genome.

In parallel with the explosion of molecular measurements generated by high throughput
technologies, a fundamental change has occurred in the way this molecular data is shared.
Many journals, especially high-impact journals, require the data to be submitted to
international public databases before a manuscript is considered for publication. A number
of international public data repositories such as the National Center for Biotechnology
Information (NCBI) Gene Expression Omnibus (GEO) and the European Bioinformatics
Institute (EBI) Array Express have been set up to store and distribute these data.
Interestingly, this wave of public data sharing has not been rapidly embraced by the
transplant field as evidenced by many of the transplant related journals still not mandating
raw data deposition in the public domain, prior to acceptance for publication.

The importance of sharing large molecular data sets across experiments cannot be
overestimated; as of January 2011, GEO contains more than a half million samples from
over 21,000 experiments. Furthermore, these databases are complemented by knowledge-
bases of functional annotation that describe the biological processes and signaling pathways
in which these gene products are known to be involved in. Integration of this knowledge and
data presents unprecedented opportunities that hold a promise to accelerate and improve our
understanding of biology, and specifically for the field of transplantation.

High throughput molecular measurements in transplantation
By far, gene expression microarrays have been the most used high throughput technology in
transplantation to date (6). Despite delayed adoption of the microarray technology in
transplantation, the number of studies using high throughput technologies has been steadily
increasing, albeit slowly (7). Since the publication of the first large transplant microarray
study in 2003 (microarrays were invented in 1995), there are now over 70 human studies in
public domain using high throughput technologies. These studies examined biopsy, blood
and urine samples from different conditions including acute rejection (AR), stable graft
functions (STA), chronic injury (CI), tolerance (TOL), and drug response (DR) from
transplant patients.

Increased use of high throughput technologies has led to significant improvements in our
understanding of the complex allograft injury mechanisms. In a landmark study, Sarwal et
al., identified a pivotal role of infiltrating B-cells in acute rejection demonstrating a strong
association between presence of dense clusters of B-cells and severe acute rejection (8).
Similar pathogenesis-based transcripts (PBT) expression panels have been inferred from
mouse experiments and applied to human transplant expression patterns in an effort to
develop correlates of histopathological lesions in renal transplant biopsies (9). Most
recently, Pham, Valantine, and colleagues from the IMAGE Study Group showed in a
landmark study how blood-based gene-expression profiling could be used to substitute for
biopsy based monitoring after heart transplantation (10).
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Newer modalities have enabled studies to move past RNA into their coded proteins. To
evaluate pathogenicity of non-HLA antibodies after transplantation, Sutherland et al. used
newer protein microarrays to identify 36 non-HLA targets in multiple renal transplant
patients with acute renal transplant rejection. From this list, protein Kinase C-ζ (PKCζ) was
then validated to show that it is a marker of severe allograft injury (11). Additionally, using
protein microarrays Angiotensinogen and PRKRIP1 have been identified as biomarkers of
chronic kidney injury, and it is hypothesized that autoantibodies are raised against these
unusual targets as they are exposed in the process of cellular damage in the kidney (12).

Similar to the progress seen in genomics and proteomics, recent advances in small molecule
identification technologies (e.g., mass spectrometry, surface enhanced laser desorption/
ionization, Liquid Chromatography/Mass Spectrometry, nuclear magnetic resonance) have
given rise to the application of peptidomics and metabolomics to transplantation. Urine is a
rich biofluid source for biomarker discovery in organ transplantation. Shotgun proteomics
can now map the entire urinary proteome (13), and evaluate its perturbation during different
types of graft injury. Smaller fragments of the urinary peptidome, consisting of degraded
byproducts of intact proteins by enzymatic cleavage, can also provide insights into the
perturbations in chemical balance during kidney injury (14–15). Metabolomics has been
used for identifying injury caused by ischemia and reperfusion injury (16) as well as for
monitoring drug toxicity (17–18). Metabolomics may be more ideally suited for monitoring
drug toxicity than other high throughput technologies, as small molecule drugs and drug
metabolites can be specifically measured (19).

High throughput technologies have also been expanded to study the role of recently
discovered biological entities in transplantation, such as microRNAs (miRNAs). Anglicheau
et al. recently used microfluidic cards to profile miRNAs in post-transplantation biopsies to
demonstrate their altered expression during AR (20). Furthermore, they also demonstrated
that the miRNAs over-expressed in AR biopsies are also highly expressed in peripheral
blood mononuclear cells (PBMCs), which suggested that the intragraft change in miRNA
levels may be explained by infiltrating cells, hence, may be used as potential non-invasive
biomarkers.

Current challenges in transplantation and the role of translational
bioinformatics in overcoming them

However, despite these advances in our understanding of graft injury mechanisms, the
impact on diagnostics and therapeutics for transplantation has been limited, as evident from
the excellent short-term graft survival being overshadowed by poor long-term survival, the
need for life-long immunosuppressive medication, and lack of non-invasive markers for
monitoring and predicting graft injury.

Small sample sizes
One of the reasons for the limited impact of the high throughput studies in transplantation
has been typically lower number of individuals and samples used these studies. For instance,
searching the NCBI GEO for microarray studies in humans described with the term
“transplant” yields 69 experiments, of which only 16 have more than 50 samples and only 6
have more than 100 samples. These numbers are more disappointing when put into the
context that these experiments are divided among four different organs (lung, kidney, liver,
heart) studying at least three different conditions (acute rejection, chronic rejection,
tolerance). In other words, since the adoption of high throughput technologies in
transplantation almost a decade ago, there have still not been enough studies with a large
enough number of samples to truly understand graft injury mechanisms to bring novel
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diagnostics and therapeutics into the clinics that can improve patient care. One way to
address this shortcoming is to perform a meta-analysis by integrating smaller independent
experiments. Such an analysis can not only increase the number of available samples, but
also account for the experiment-specific technical biases such as microarray platform or
hybridization protocol (21)(22).

In one example of an integrative analysis, Chen et al. recently performed a meta-analysis
using three transplant RNA microarray data sets from AR biopsies (two from kidney and
one from heart transplant) (23). Using a vote counting method, 45 genes were identified that
were significantly over-expressed in all data sets. The proteins coded for by these RNA were
then screened as potential blood markers for AR, of which three proteins (PECAM1, CD44,
and CXCL9) were found to be significantly over-expressed in blood samples in both kidney
and heart transplant patients with biopsy-confirmed AR. One of the markers, PECAM1,
identified renal AR with 89% sensitivity and 75% specificity, and had an area under the
receiver operating characteristic (ROC) curve of 0.716 for cardiac transplant patients. This
study demonstrated that integration of data sets can reduce biological biases across
experiments, even the effect of tissue source. In addition to reducing technical and biological
biases, integration of public data sets from different organ transplants allows positing and
testing novel hypotheses such as identifying common immune responses irrespective of the
type of transplanted organ (24).

Integration can also be performed across molecular measurements types. Li at al. integrated
antibody-level measurements from a protein array with renal compartment-specific gene
expression data (25). This integrative analysis showed that the some of the post-transplant
serological responses observed using protein microarrays were specific to the transplanted
organ.

Diagnostic and therapeutic needs in transplantation
Another challenge in transplantation is the lifelong administration of current
immunosuppressive drugs with multiple side effects. For instance, use of calcineurin
inhibitors itself is associated with nephrotoxicity, which in turn can contribute to long-term
graft failure, along with opportunistic infections. Similarly use of corticosteroids increases
the risk of cardiovascular diseases. Translational bioinformatics could play a significant role
in addressing the critical need of identifying new immunosuppressive targets in
transplantation.

Virtually all existing immunosuppressives are designed to prevent acute rejection by
inhibiting T-cell activation. This is achieved through various pathways, such as inhibition of
antigen presenting cell development, cytokine production, or co-stimulatory signals for T
cell activation. However, reduction in AR incidence has been shown to have minimal or no
effect on graft survival (26). Furthermore, existing drugs are unable to prevent chronic
rejection. Chronic rejection is thought to be caused by alloantigen-independent mechanism
in addition to alloantigen-dependent mechanisms.

The development of additional therapeutic options for transplantation may benefit from a
systems-level approach. As an example, when TGN1412, an anti-CD28 monoclonal
antibody, was administered to six patients in a phase 1 clinical trial in 2006, all patients
suffered from severe multi-organ failure within hours following the induction of pro-
inflammatory cytokines (27). CD28 is a co-stimulatory receptor on T cell, which binds to
CD80 or CD86 on activated antigen-presenting cells. Inhibiting interaction between CD28
and CD80/CD86 has been shown to inhibit a variety of immune responses in vivo, including
transplant rejection. Although the authors did not report the mechanism for the release of
cytokine storm, Puellmann and Beham hypothesized that TGN1412 may also have activated
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neutrophils as a subset of human neutrophils also expresses both CD28 and T cell receptor
(28). These undesired side effects of TGN1412 highlight the limitations of focusing on
single pathway in predicting a system-level response to an external stimulus, as they may
have been potentially avoided by a global analysis.

Allograft rejection is a heterogeneous process starting with antigen processing and
presentation, followed by cytokine-cytokine receptor signaling and activation of different
immune cells that ultimately lead to graft failure. Hence, designing a drug that targets single
pathway (e.g., co-stimulatory blockade of T cell activation) in isolation is, intuitively,
unlikely to improve allograft survival in the long term. In other words, the TGN1412 trial
under scores the need for studying complex immunological systems, such as allograft injury,
at a systems biology level, especially since there are multiple known mechanisms of graft
injury.

Scientists enabled by systems biology will drive future transplantation research
Systems biology expands from the traditional molecular biological method of studying pair-
wise interactions into a network-based approach by integrating individual components to
model a complex system. These individual molecular relationships can be built from a
variety of components (29). By integrating data of various types, systems biology aims to
explain a disease at the level of regulatory pathways in tissues and organs, even in whole
organisms, while attempting to account for dynamics within regulatory networks. A large
number of computational approaches have been developed to generate co-expression
networks from protein binding data (30), functional annotations (31) and drug activity (32).
Using these approaches it has been shown that such networks have properties that are not
otherwise discernable from the relations themselves, and have preferential connectivity that
results in “hub” nodes, which are molecules that connect to a larger number of other
molecules (33). These hubs have been shown to be critical in a number of studies (34–35).

There have been strong arguments for using systems biology-based techniques for
identifying critical component nodes in order to improve drug discovery (36–37). However,
to the best of our knowledge, the use of systems biology-based approaches in transplantation
has been very limited. To date, a large number of biomarkers have been identified for
various post-transplant conditions without sufficient evidence discussing whether these are
markers of an ongoing injury (effect markers) or related to the actual causes of the injury
(causal markers). Although tremendously useful in graft monitoring, effect markers cannot
be directly used to prevent injury, and are not useful as targets for drug development.
Development of new drugs that reduce drug toxicity and chronic rejection requires
identification of causal markers that can be targeted for novel therapeutics. We believe that
use of systems biology is the critical next step for deeper understanding and the
identification of causal markers of graft injury in transplantation.

However, integration of large amounts of data for systems biology-based analysis poses new
challenges for the field of transplantation. Note as an example that a typical microarray
experiment produces approximately 50,000 data points per sample. Hence, an experiment
with 50 samples will produce more than 2.5 million data points. This number is dwarfed
when compared to millions of data points generated by SNP genotyping platforms for
thousands of samples in a typical genome-wide association study. Furthermore, the amount
of data generated is only bound to increase as next-generation sequencing becomes more
commonly used.

Therefore, a future scientist in transplantation using systems biology-based approaches will
now be required to have training in multiple disciplines, including computational biology as
well as the traditional clinical sciences. For instance, a clinical scientist evaluating data from
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a high throughput technology, using any of the methods available for analysis of the data,
needs to be aware of the nuanced differences between the various methods and their effects
on interpretations of the data.

What this means is that today’s clinical scientist is going to need a basic, if not advanced,
computer programming ability. A clinician scientist must be able to integrate these data
quickly and in meaningful way. A relevant example was recently noted in the leaked emails
of a Climatic Research Unit (CRU) employee at the University of East Anglia in the UK.
The employee wrote in his notes “Yup, my awful programming strikes again,” as he tried to
correct code for analyzing weather station data (38). Without necessary programming skills,
it is easy to imagine unexpected consequences that can cast doubts on the results from the
entire field. At the same time, incorporation of computational skills into the curricula of
transplantation training program is not yet a high priority, to our knowledge.

Conclusion
Since the first use of microarrays in transplantation almost a decade ago, the use of high
throughput technologies in transplantation has significantly improved and advanced our
understanding of allograft rejection mechanisms. However, although short-term survival
rates have been excellent, long-term survival rates for transplanted organs have not
improved, and drug toxicity and chronic rejection remain major challenges.

In order to take our understanding of injury mechanisms in organ transplantations to the next
level, integration of molecular measurement data from different experiments and different
technologies is required. Furthermore, these integrated data need to be analyzed at a global,
systems biology level, to identify better diagnostic and therapeutic markers. However, the
fragmented and incomplete nature of the existing knowledge bases still poses a challenge to
achieving these goals (39). Furthermore, wider adoption of a policy to submit raw data into
public repository is also required by the transplant related journals. It is also imperative that
the next generation of clinician scientists is armed with computational skills that will ensure
novel questions continued to be posed and answered, enabled by the proper integration of
diverse sources of data.
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Figure 1.
Applications of translational bioinformatics in transplantation. The asterisk denotes the areas
in transplantation in which translational bioinformatics is poised to play a crucial role.
Image of the kidney adapted from, https://secure.wikimedia.org/wikipedia/en/wiki/
File:KidneyStructures_PioM.svg#metadata available under Wikimedia commons license,
(https://secure.wikimedia.org/wikipedia/commons/wiki/Commons:Licensing).

Khatri et al. Page 9

Clin Pharmacol Ther. Author manuscript; available in PMC 2012 October 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

https://secure.wikimedia.org/wikipedia/en/wiki/File:KidneyStructures_PioM.svg#metadata
https://secure.wikimedia.org/wikipedia/en/wiki/File:KidneyStructures_PioM.svg#metadata
https://secure.wikimedia.org/wikipedia/commons/wiki/Commons:Licensing

