Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhanced growth inhibition of metastatic lung tumors by intravenous injection of ATRA-cationic liposome/IL-12 pDNA complexes in mice

Abstract

Interleukin 12 (IL-12) is a proinflammatory cytokine with antitumor activity. All-trans–retinoic acid (ATRA) exerts antitumor effects by regulating a variety of gene expressions, including tumor necrosis factor receptor 1 (TNFR1), increases the number of TNFR1 and potentiates TNF-α-induced apoptosis in cancer cells. In this study, ATRA-incorporated cationic liposome (ATRA-cationic liposome)/IL-12 plasmid DNA (pDNA) complexes were prepared to improve therapeutic efficacy of cationic liposome/IL-12 pDNA complexes in a mouse model of metastatic lung tumor after intravenous injection. IL-12 production in lungs by ATRA-cationic liposome/IL-12 pDNA complexes was comparable with that by cationic liposome/IL-12 pDNA complexes. The number of metastatic tumor cells (colon26/Luc) was quantitatively evaluated by measuring luciferase activity. ATRA-cationic liposome/IL-12 pDNA complexes reduced the number of colon26/Luc cells and tumor nodules in lungs. ATRA-cationic liposome/IL-12 pDNA complexes significantly prolonged the survival time of mice, whereas cationic liposome/IL-12 pDNA only slightly prolonged it. ATRA-cationic liposome/IL-12 pDNA complexes increased the TNFR1 mRNA upregulation and the number of apoptotic cells in the lung. Moreover, reduced serum alanine transaminase (ALT) and aspartate transaminase (AST) activities were observed in mice treated with ATRA-cationic liposome/IL-12 pDNA complexes. These results suggest that intravenous injection of ATRA-cationic liposome/IL-12 pDNA complexes is an effective method for the treatment of lung metastasis in mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Colombo MP, Trinchieri G . Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev 2002; 13: 155–168.

    Article  CAS  Google Scholar 

  2. Dow SW, Elmslie RE, Fradkin LG, Liggitt DH, Heath TD, Willson AP et al. Intravenous cytokine gene delivery by lipid-DNA complexes controls the growth of established lung metastases. Hum Gene Ther 1999; 10: 2961–2972.

    Article  CAS  PubMed  Google Scholar 

  3. Car BD, Eng VM, Lipman JM, Anderson TD . The toxicology of interleukin-12: a review. Toxicol Pathol 1999; 27: 58–63.

    Article  CAS  PubMed  Google Scholar 

  4. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995; 374: 546–549.

    Article  CAS  PubMed  Google Scholar 

  5. Loisel S, Le Gall C, Doucet L, Ferec C, Floch V . Contribution of plasmid DNA to hepatotoxicity after systemic administration of lipoplexes. Hum Gene Ther 2001; 12: 685–696.

    Article  CAS  PubMed  Google Scholar 

  6. Sakurai F, Terada T, Yasuda K, Yamashita F, Takakura Y, Hashida M . The role of tissue macrophages in the induction of proinflammatory cytokine production following intravenous injection of lipoplexes. Gene Therapy 2002; 9: 1120–1126.

    Article  CAS  PubMed  Google Scholar 

  7. Kawakami S, Ito Y, Charoensit P, Yamashita F, Hashida M . Evaluation of proinflammatory cytokine production induced by linear and branched polyethylenimine/plasmid DNA complexes in mice. J Pharmacol Exp Ther 2006; 317: 1382–1390.

    Article  CAS  PubMed  Google Scholar 

  8. Ito Y, Kawakami S, Charoensit P, Higuchi Y, Hashida M . Evaluation of proinflammatory cytokine production and liver injury induced by plasmid DNA/cationic liposome complexes with various mixing ratios in mice. Eur J Pharm Biopharm 2009; 71: 303–309.

    Article  CAS  PubMed  Google Scholar 

  9. Janat-Amsbury MM, Yockman JW, Anderson ML, Kieback DG, Kim SW . Combination of local, non-viral IL12 gene therapy and systemic paclitaxel chemotherapy in a syngeneic ID8 mouse model for human ovarian cancer. Anticancer Res 2006; 26: 3223–3228.

    CAS  PubMed  Google Scholar 

  10. Zhu S, Waguespack M, Barker SA, Li S . Doxorubicin directs the accumulation of interleukin-12-induced IFNγ into tumors for enhancing STAT1 dependent antitumor effect. Clin Cancer Res 2007; 13: 4252–4260.

    Article  CAS  PubMed  Google Scholar 

  11. Rowinsky EK, Cazenave LA, Donehower RC . Taxol: a novel investigational antimicrotubule agent. J Natl Cancer Inst 1990; 82: 1247–1259.

    Article  CAS  PubMed  Google Scholar 

  12. Denis R, Vincent D, Jérôme Q, Florence ML, JeanPierre D, Philippe R et al. Preclinical toxicity, toxicokinetics, and antitumoral efficacy studies of DTS-201, a tumor-selective peptidic prodrug of doxorubicin. Clin Cancer Res 2008; 14: 1258–1265.

    Article  Google Scholar 

  13. Strickland S, Mahdavi V . The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell 1978; 15: 393–403.

    Article  CAS  PubMed  Google Scholar 

  14. Lotan R, Francis GE, Freeman CS, Waxman S . Differentiation therapy. Cancer Res 1990; 50: 3453–3464.

    CAS  PubMed  Google Scholar 

  15. Tallman MS, Nabhan C . Management of acute promyelocytic leukemia. Leukemia 2002; 4: 381–389.

    Google Scholar 

  16. Freemantle SJ, Spinella MJ, Dmitrovsky E . Retinoids in cancer therapy and chemoprevention: promise meets resistance. Oncogene 2003; 22: 7305–7315.

    Article  CAS  PubMed  Google Scholar 

  17. Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ et al. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 2006; 66: 9299–9307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adès L, Chevret S, Raffoux E, de Botton S, Guerci A, Pigneux A et al. Is cytarabine useful in the treatment of acute promyelocytic leukemia? J Clin Oncol 2006; 24: 5703–5710.

    Article  PubMed  Google Scholar 

  19. Boorjian SA, Milowsky MI, Kaplan J, Albert M, Cobham MV, Coll DM et al. Phase 1/2 clinical trial of interferon α2b and weekly liposome-encapsulated all-trans retinoic acid in patients with advanced renal cell carcinoma. J Immunother 2007; 30: 655–662.

    Article  CAS  PubMed  Google Scholar 

  20. Soriano AO, Yang H, Faderl S, Estrov Z, Giles F, Ravandi F et al. Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. Blood 2007; 110: 2302–2308.

    Article  CAS  PubMed  Google Scholar 

  21. Montesinos P, Bergua JM, Vellenga E, Rayón C, Parody R, de la Serna J et al. Differentiation syndrome in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline chemotherapy: characteristics, outcome, and prognostic factors. Blood 2009; 113: 775–783.

    Article  CAS  PubMed  Google Scholar 

  22. Soprano DR, Qin P, Soprano KJ . Retinoic acid receptors and cancers. Annu Rev Nutr 2004; 24: 201–221.

    Article  CAS  PubMed  Google Scholar 

  23. Manna SK, Aggarwal BB . All-trans-retinoic acid upregulates TNF receptors and potentiates TNF-induced activation of nuclear factors-κB, activated protein-1 and apoptosis in human lung cancer cells. Oncogene 2000; 19: 2110–2119.

    Article  CAS  PubMed  Google Scholar 

  24. Datta PK, Lianos EA . Retinoic acids inhibit inducible nitric oxide synthase expression in mesangial cells. Kidney Int 1999; 56: 486–493.

    Article  CAS  PubMed  Google Scholar 

  25. Kim BH, Kang KS, Lee YS . Effect of retinoids on LPS-induced COX-2 expression and COX-2 associated PGE2 release from mouse peritoneal macrophages and TNF-α release from rat peripheral blood mononuclear cells. Toxicol Lett 2004; 150: 191–201.

    Article  CAS  PubMed  Google Scholar 

  26. Motomura K, Sakai H, Isobe H, Nawata H . All-trans retinoic acid suppresses liver injury induced by propionibacterium acnes and lipopolysaccharide in rats. J Gastrol Hepatol Commun 1997; 12: 887–892.

    Article  CAS  Google Scholar 

  27. Oseto S, Moriyama T, Kawada N, Nagatoya K, Takeji M, Ando A et al. Therapeutic effect of all-trans retinoic acid on rats with anti-GBM antibody glomerulonephritis. Kidney Int 2003; 64: 1241–1252.

    Article  CAS  PubMed  Google Scholar 

  28. Charoensit P, Kawakami S, Higuchi Y, Hashida M . Incorporation of all-trans retinoic acid into lipoplexes inhibits nuclear factor κB activation mediated liver injury induced by lipoplexes in mice. J Gene Med 2008; 10: 61–69.

    Article  CAS  PubMed  Google Scholar 

  29. Nishikawa M, Hyoudou K, Kobayashi Y, Umeyama Y, Takakura Y, Hashida M . Inhibition of metastatic tumor growth by targeted delivery of antioxidant enzymes. J Control Release 2005; 109: 101–107.

    Article  CAS  PubMed  Google Scholar 

  30. Kuramoto Y, Nishikawa M, Hyoudou K, Yamashita F, Hashida M . Inhibition of peritoneal dissemination of tumor cells by single dosing of phosphodiester CpG oligonucleotide/cationic liposome complex. J Control Release 2006; 10: 226–333.

    Article  Google Scholar 

  31. Hyoudou K, Nishikawa M, Umeyama Y, Kobayashi Y, Yamashita F, Hashida M . Inhibition of metastatic tumor growth in mouse lung by repeated administration of polyethylene glycol-conjugated catalase: quantitative analysis with firefly luciferase-expressing melanoma cells. Clin Cancer Res 2004; 10: 7685–7691.

    Article  CAS  PubMed  Google Scholar 

  32. Suzuki S, Kawakami S, Chansri N, Yamashita F, Hashida M . Inhibition of pulmonary metastasis in mice by all-trans retinoic acid incorporated in cationic liposomes. J Control Release 2006; 116: 58–63.

    Article  CAS  PubMed  Google Scholar 

  33. Kawakami S, Suzuki S, Yamashita F, Hashida M . Induction of apoptosis in A549 human lung cancer cells by all-trans retinoic acid incorporated in DOTAP/cholesterol liposomes. J Control Release 2006; 110: 514–521.

    Article  CAS  PubMed  Google Scholar 

  34. Wang H, Xu DX, Lu JW, Zhao L, Zhang C, Wei W . N-acetylcysteine attenuates lipopolysaccharide-induced apoptotic liver damage in D-galactosamine-sensitized mice. Acta Pharmacol Sin 2007; 28: 1803–1809.

    PubMed  Google Scholar 

  35. Mahato RI, Kawabata K, Nomura T, Takakura Y, Hashida M . Physicochemical and pharmacokinetic characteristics of plasmid DNA/cationic liposome complexes. J Pharm Sci 1995; 84: 1267–1271.

    Article  CAS  PubMed  Google Scholar 

  36. Osaka G, Carey K, Cuthbertson A, Godowski P, Patapoff T, Ryan A et al. Pharmacokinetics, tissue distribution, and expression efficiency of plasmid [33P]DNA following intravenous administration of DNA/cationic lipid complexes in mice: use of a novel radionuclide approach. J Pharm Sci 1996; 85: 612–618.

    Article  CAS  PubMed  Google Scholar 

  37. Agresti C, Bernardo A, Del Russo N, Marziali G, Battistini A, Aloisi F et al. Synergistic stimulation of MHC class I and IRF-1 gene expression by IFN-γ and TNF-α in oligodendrocytes. Eur J Neurosci 1998; 10: 2975–2983.

    Article  CAS  PubMed  Google Scholar 

  38. Berger AC, Alexander HR, Wu PC, Tang G, Gnant MF, Mixon A et al. Tumour necrosis factor receptor I (p55) is upregulated on endothelial cells by exposure to the tumour-derived cytokine endothelial monocyte- activating polypeptide II (EMAP-II). Cytokine 2000; 12: 992–1000.

    Article  CAS  PubMed  Google Scholar 

  39. Zhou J, Zhang M, Atherton SS . Tumor necrosis factor-alpha-induced apoptosis in murine cytomegalovirus retinitis. Invest Ophthalmol Vis Sci 2007; 48: 1691–1700.

    Article  PubMed  Google Scholar 

  40. Car BD, Eng VM, Schnyder B, LeHir M, Shakhov AN, Woerly G et al. Role of interferon-γ in interleukin 12-induced pathology in mice. Am J Pathol 1995; 147: 1693–1707.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Motomura K, Isobe H, Sakai H, Nawata H . Suppressive effects of all-trans retinoic acid on the lipopolysaccharide-stimulated release of tumor necrosis factor-á and nitric oxide by rat Kupffer cells in vitro. Int Hepatol Commun 1996; 5: 177–183.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and by Health and Labour Sciences Research Grants for Research on Advanced Medical Technology from the Ministry of Health, Labour and Welfare of Japan and by the Radioisotope Research Center of Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Hashida.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charoensit, P., Kawakami, S., Higuchi, Y. et al. Enhanced growth inhibition of metastatic lung tumors by intravenous injection of ATRA-cationic liposome/IL-12 pDNA complexes in mice. Cancer Gene Ther 17, 512–522 (2010). https://doi.org/10.1038/cgt.2010.12

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2010.12

Keywords

This article is cited by

Search

Quick links