
OPEN

Review

Paracrine control of tissue regeneration and cell
proliferation by Caspase-3
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Executioner caspases such as Caspase-3 and Caspase-7 have long been recognised as the key proteases involved in cell
demolition during apoptosis. Caspase activation also modulates signal transduction inside cells, through activation or
inactivation of kinases, phosphatases and other signalling molecules. Interestingly, a series of recent studies have
demonstrated that caspase activation may also influence signal transduction and gene expression changes in neighbouring
cells that themselves did not activate caspases. This review describes the physiological relevance of paracrine Caspase-3
signalling for developmental processes, tissue homeostasis and tissue regeneration, and discusses the role of soluble factors
and microparticles in mediating these paracrine activities. While non-cell autonomous control of tissue regeneration by
Caspase-3 may represent an important process for maintaining tissue homeostasis, it may limit the efficiency of current cancer
therapy by promoting cell proliferation in those cancer cells resistant to radio- or chemotherapy. We discuss recent evidence in
support of such a role for Caspase-3, and discuss its therapeutic implication.
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Facts:

� Activation of the executioner Caspases-3 and -7 is
responsible for cleavage of numerous cellular proteins,
leading to the biochemical and morphological hallmarks of
apoptosis.

� Recent work highlights the involvement of executioner
caspases in mediating the release of paracrine factor(s),
which stimulate proliferation and regeneration in
neighbouring, non-apoptotic cells.

� Surviving cancer cells have been shown to be resistant to
chemo- and radiotherapeutic insults and respond with
accelerated repopulation and proliferation of tumour cells,
effects that may be mediated in a Caspase-3-dependent
manner.

Open Questions:

� How is Caspase-3 signalling in a paracrine manner from
apoptosing cells stimulating signal transduction in non-
apoptotic, neighbouring cells?

� Can specific inhibition of Caspase-3, or broad spectrum
caspase inhibition in concert with chemotherapy

lead to better patient responses and therapeutic
outcomes?

� Is Caspase-3 a predictor of chemotherapy responsiveness?

Apoptosis is essential to maintain and support the normal life
cycle, with central roles in embryonal development and,
through the disposal of damaged or aged cells, in the regulation
of adult tissue homeostasis.1,2 There is a fine balance
between normal rates of apoptosis, excess apoptosis during
degenerative conditions, and at the other extreme, failure of
cells to undergo apoptosis contributing to hyperplasia, auto-
immune disorders and cancer.3–8 Caspases are cysteine
proteases that have critical roles in the orchestration of
apoptosis, cleaving target proteins to execute cell death
(Figure 1). The cell disassembly intrinsic to apoptosis is largely
mediated by Caspase-3, which targets structural substrates
including nuclear laminins, focal adhesion sites and cell–cell
adherence junctions.9–14 The DNA fragmentation seen in
apoptosis is also precipitated by Caspase-3, which cleaves
Inhibitor of Caspase activated DNAase/DNA fragmentation
factor 45 (ICAD/DFF45).15,16 This permits entry of Caspase-
activated DNAase (CAD) into the nucleus for DNA fragmenta-
tion leading to the characteristic ladder of DNA fragments.17
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Similarly to Caspase-3, Caspase-7 is also activated during
the execution phase of apoptosis, and its functions partially
overlap with Caspase-3 such that Caspase-3-deficient
cells continue to execute apoptosis in the presence of
Caspase-7.18 Indeed, deficiency in both Caspase-3 and
Caspase-7 is required to entirely prevent the activation of
apoptosis.19 While Caspase-3 and Caspase-7 share many
functions as executioner of apoptosis, there are also clear
distinctions between these effectors both in the phenotypical
appearance of Caspase-3 null and Caspase-7 null mice,
and also at the molecular level.19 Generally, Caspase-3
demonstrates activity towards a wider range of substrates
than Caspase-7.20 However, redundancy between Caspase-3
and Caspase-7 is cell and stimulus dependent.21,22 One
example where Caspase-3 likely has amore predominant role

is the nervous system. Here, Caspase-3 deficiency is
sufficient to cause profound neuro-developmental defects.23

In the absence of Caspase-3 and Caspase-7, or in the
presence of pharmacological pan-caspase inhibitors, cell
death however also occurs, albeit in a more delayed manner
and with different morphological features. During the intrinsic
pathway, mitochondrial permeabilisation can activate
caspase-independent cell death by adenosine triphosphate
(ATP) depletion, activation of autophagy/mitophagy, or
release of alternative pro-apoptotic factors from mitochondria.8

During the extrinsic pathway, Caspase-3 is activated by
Caspase-8. Caspase-8 also suppresses necroptosis via
CYLD cleavage.24–26 Hence, administration of pan-caspase
inhibitors can lead to necroptotic cell death during death
receptor activation by enhancing the phosphorylation of
receptor-interacting protein (RIP) 1 and RIP3.27 Even though
cell death may not absolutely require Caspase-3 and
Caspase-7, activation of these specific proteases is still of
significant biological importance in the context of tissue
homeostasis. Apoptosis and caspase activation during
apoptosis have been shown to trigger the release of anti-
inflammatory cytokines and to suppress inflammatory
responses, and hence play an important role in the control
of immune responses.28–31 Investigation of the non-apoptotic
functions of caspases has identified roles as negative
regulators of the immune system, and their ability to attenuate
inflammation is accomplished by affecting pro-inflammatory
molecules, hence avoiding autoimmune responses32

(Figure 2). These pro-inflammatory danger-associated
molecular patterns (DAMPs) are thought to be responsible
for the mobilisation of the immune and inflammatory cascade
in response to cellular necrosis.33 The immune system
response to caspase-dependent and caspase-independent
cell death is not identical and is responsible for the outcome of
apoptosis in the former, and necrosis in caspase-independent
cell death. It has been proposed that modifications of the
inflammatory response by caspases are central to these
contrasting outcomes, and inhibit autoimmunity induced by
necrotic cells.32,34

It is now becoming increasingly evident that in addition to
roles in immune system regulation, the activation of execu-
tioner caspases also has a direct role in tissue regeneration by
stimulating signal transduction and cell proliferation in
neighbouring, non-apoptotic cells. The fact that Caspase-3
not only functions to trigger the elimination of cells, but also
has fundamental roles in signal transduction has been
demonstrated in several previous studies. For example,
Caspase-3 activates specific protein kinases and phosphatases
during apoptosis.35,36 Caspase-3 has also been shown to
activate Calcium-independent phospholipase A2 (iPLA2),
generating lysophosphatidic acid and arachidonic acid
(AA).37 Interestingly, while lysophosphatidic acid may prevent
apoptosis via blockage of poly (ADP-ribose) polymerase
(PARP) cleavage andDNA fragmentation, AA has been shown
to enhance cell migration in neighbouring, non-apoptotic
cells.37 Lysophosphatidylcholine (LPC) generated by caspase-
activated iPLA2 sends out chemotactic ‘eat me’ signals to
monocytic cells which then migrate to apoptotic cells, which
are engulfed and removed.38 Caspases have also been
suggested to have a role in non-apoptotic processes such as
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Figure 1 Caspase-3 activation via the intrinsic and extrinsic apoptotic
pathways. Intrinsic apoptosis is induced by cellular stress, leading to the activation
of the Bcl-2 family of proteins. The BAK and BAX oligomers then promote pore
formation in the outer mitochondrial membrane. Release of various intermembrane
space proteins occurs. Cytochrome C binds to apoptotic protease activating factor 1
(APAF1), inducing the oligomerisation of APAF1 to form the apoptosome. The
apoptosome recruits procaspase-9, leading to dimerisation and activation of
Caspase-9. Caspase-9 activation stimulates the caspase cascade culminating in
activation of executioner Caspases-3 and -7. These caspases are responsible for
cleavage of numerous cellular proteins, leading to the biochemical and
morphological hallmarks of apoptosis. The extrinsic apoptosis pathway is stimulated
via ligand binding to their corresponding death receptors and recruitment of FADD
to the death receptors occurs. FADD associates with procaspase-8/10 via its death
effector domain to form the death-inducing signalling complex (DISC). DISC
formation facilitates Caspase-8 cleavage and activation. The extrinsic pathway can
then proceed via the type I signalling pathway or the type II signalling pathway. In
type I signalling, Caspase-8 directly cleaves and activates Caspase-3 leading to cell
death. In type II signalling, Caspase-8 instead cleaves BID to activate BAK and
BAX. These proteins then induce pore formation in the mitochondria leading to
activation of the caspase cascade and culminating in Caspase-3/-7 activation. C-9,
Caspase-9; C-8, Caspase-8; C-7, Caspase-7; C-3, Caspase-3
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T-cell proliferation,39 and in the course of cellular differentiation
of osteoblasts, neural cells and skeletal muscle cell.40–42

Studies in C3H mice demonstrate that Caspase-3 activation
induces connective tissue growth factor, which encourages
fibrogenesis in this model.43 Apoptotic signalling was also
recently reported to promotemyoblast fusion, an important step
in the formation of mammalian skeletal muscle. Phosphatidyl-
serine exposure seems to be the driving force behind this
process in myoblasts.44

Caspase activation may even regulate complex physiolo-
gical processes such as long-term potentiation and long-term
depression.45,46 While many of these ‘non-apoptotic’ activities
may be a consequence of ‘physiological’ or ‘controlled’
Caspase-3 and -7 activation in cells, it is also possible that
some of these activities result from paracrine signals that
originate from apoptosing cells, but stimulate signal trans-
duction in non-apoptotic, neighboring cells.
There is strong evidence from studies in model organisms

in support of such a concept. Several studies investigated
apoptosis as a trigger for tissue remodelling in response to
tissue injury, identifying caspase activation as a key require-
ment for cell proliferation and recruitment of stem cells. In
planaria, apoptotic waves have been shown to associate with
tissue remodelling and regeneration.47 In Drosophila,
mitotic figures are reoriented in response to cell death
with documentation of apoptosis-induced compensatory
proliferation.48 Apoptotic waves are also crucial to direct
cellular regeneration in decapitated Hydra polyps.49

zVAD.fmk, a pan-caspase inhibitor, inhibits this wave of
apoptosis, resulting in failure of head regeneration. Apoptotic
cells were identified as the source of signals, directing cellular
regeneration via secretion of Wnt3 and activation of the
Wnt/b-catenin pathway in non-apoptotic cells.49 The
Wnt/b-catenin pathway is critically involved in embryonic
development as well as cell proliferation and regeneration.50,51

Once activated, this pathway leads to a buildup of b-catenin in
the cytoplasm. Upon its translocation to the nucleus b-catenin
activates transcription and upregulation of target genes
implicated in cell cycle and proliferation.52,53 In the study by
Chera et al.,49 in the decapitated group exposed to zVAD,Wnt

levels remained low with no recorded nuclear translocation of
b-catenin. The addition of Wnt3 to zVAD-treated Hydra
induced b-catenin nuclear translocation and rescued head
regeneration, validating the authors’ hypothesis that
caspases trigger tissue regeneration through actions on the
Wnt/b-catenin pathway.
Prostaglandin E2 (PGE2) production by apoptotic cells has

been identified as a link between caspase activation and the
activation of theWnt/b-catenin pathway in non-apoptotic cells.
Caspase-3 cleaves and activates iPLA2, culminating in PGE2

production and secretion, and induction of b-catenin translo-
cation and activation.37,54–56 Li et al.57 described this pathway
in the context of wound healing in mammalian cells,
designated as the ‘Phoenix Rising Pathway’. Preliminary
work in this study examined the role of Caspase-3 and
Caspase-7 in promoting stem or progenitor cell proliferation
by co-injecting epidermal keratinocyte progenitor cells
(EKP) with wild type, Caspase-3� /� or Caspase-7� /�
lethally irradiated mouse embryonic fibroblasts (MEFs)
into the hindlimbs of mice. EKP proliferation was greatest
in the wild-type MEF model, with Caspase-3� /� and
Caspase-7� /� models showing minimal proliferation. The
Caspase-3� /� model exhibited the lowest rate of prolifera-
tion, indicating that this caspase may have a prominent role in
this process. Li et al. also examined angiogenesis induced by
wild-type or Caspase-3� /� lethally irradiated MEFs using
silicone cylinders containing the MEFs implanted into nude
mice. After 2 weeks, irradiated wild-type MEFs had induced
significant vascular growth in the host, while Caspase-3� /�
MEFs induced minimal host vascular growth into the cylinder.
Further in vivowork in this study revealed that mice deficient in
either Caspase-3 or Caspase-7 exhibited reduced rates of
tissue repair in dorsal skin wounds, with defects in liver
regeneration following partial hepatectomy. The authors
demonstrated that Caspase-3 and -7 were required to
stimulate proliferation and regeneration via Caspase-3/-7-
dependent iPLA2 activation, resulting in AA synthesis and
subsequent PGE2 and Wnt/b-catenin signalling.57 Paracrine
signalling mediated by effector caspases has also been
identified as a stimulus for cell proliferation and regeneration
in beta cells.58 Insulin-secreting cells undergoing caspase-
dependent apoptosis have been identified to send out
biochemical signals into their local environment that stimulate
the differentiation or proliferation of neighbouring cells through
the induction of regenerating (reg) genes. In these investiga-
tions, the supernatant of apoptosing beta cells was sufficient
to induce expression of regenerating genes in non-apoptotic,
naı̈ve cells, and this effect was mediated by the caspase-
dependent shedding of microparticles from apoptosing cells,
as gene induction in neighbouring cells was blocked either by
caspase inhibition or by the removal of microparticles from the
supernatant. Hence, paracrine signalling by Caspase-3 or
Caspase-7 may represent an important process in the
maintenance of tissue homeostasis, by stimulating cell
proliferation, migration and possibly differentiation, thereby
replacing injured cells59 (Figure 3).
While such paracrine functions of Caspase-3 or Caspase-7

may be beneficial in the context of tissue injury and
regeneration, they may limit the efficiency of current cancer
therapy by promoting cell proliferation in the fraction of cancer
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Figure 2 Paracrine signalling from apoptosing cells can regulate inflammatory
responses. Apoptosis and caspase activation during apoptosis have been shown to
play an important role in the control of immune responses by triggering the release
of anti-inflammatory cytokines and suppressing inflammatory responses. Apoptotic
cells exert their immunosuppressive effect by increasing secretion of the anti-
inflammatory cytokine IL-10 and decreasing secretion of pro-inflammatory cytokines
IL-1, IL-12 and TNF-a. TGF-b-1 secretion from apoptotic cells also enhances
immune suppression via inhibition of pro-inflammatory cytokine production. IL,
interleukin; TNF-a, tumour necrosis factor a; TGF-b-1, transforming growth factor b-1
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cells resistant to radio- or chemotherapy. Most common
chemotherapeutic agents induce apoptosis in cancer cells.
The complex environment of cancer cells, coupled with a
myriad of adaptive responses, mutated genes and altered
metabolism means that not all cancer cells are equally
sensitive to radio- or chemotherapy.60 The fractional kill
hypothesis states that a defined chemotherapy concentration
applied for a defined period of time will kill a constant fraction
of cells in a population regardless of tumour size, relative to

cell sensitivity to treatment. Of note, surviving cancer cells
have been shown to respond to chemo- and radiotherapeutic
insults with accelerated repopulation and proliferation of
tumour cells61,62 (Figure 4). Indeed, increased proliferation
rates have been reported to correlate with poor patient
prognosis in many cancers.63,64 Coupled with cancer cell
heterogeneity in responses is the presence of cancer stem
cells, existing as a cell population within tumours. Cancer
stem cells have been shown to be particularly resistant to
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Figure 3 Paracrine signalling from apoptosing cells. Upon apoptosis induction, Caspase-3/-7 acts as an executioner caspase, responsible for cleavage of many cellular
proteins, leading to the biochemical and morphological hallmarks of apoptosis, including oligonucleosomal DNA fragmentation. Recent work highlights new paracrine roles for
Caspase-3 in stimulating proliferation and regeneration in neighbouring, non-apoptotic cells. Caspase-3 activation leads to iPLA2 activation, and production of AA and LPA.
AA stimulates PGE2 which, along with Wnt, activates b-catenin signalling in non-apoptotic cells, leading to increased cell proliferation and tissue regeneration. Shed
microparticles from apoptosing cells may stimulate the induction of regenerating genes in neighbouring cells. iPLA2, calcium-independent phospholipase A2; COX-2,
cyclooxygenase 2; LPA, lysophosphatidic acid; PSP/reg, pancreatic stone protein/regenerating gene; AA, arachidonic acid; PGE2, prostaglandin E2

Therapy Apoptosis Proliferation

Figure 4 Paracrine Caspase-3/-7 signalling may limit the efficiency of cancer therapy. Common radio- or chemotherapies induce apoptosis in cancer cells (panel 1).
As these cells die, they may trigger Caspase-3-/-7-dependent paracrine signalling (panel 2), thereby accelerating the repopulation of neighbouring tumour cells, and also
increasing proliferation rates in more resistant cells that survive the chemo- or radiotherapeutic insult (panel 3). This signalling process may limit the efficacy of current cancer
therapies
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chemotherapy, and have a unique capacity to initiate
tumours,65,66 a capacity that may be stimulated by paracrine
Caspase-3/-7 signalling. Paracrine signalling mediated by
effector caspases, in particular Caspase-3, as a stimulus for
tumour growth and proliferation has been recently demon-
strated in the context of cancer therapy.54 In an in vivomodel,
labelled stem cells were implanted with and without irradiated
MEFs representing apoptosing cells. The presence of
apoptosing cells increased stem cell proliferation, as
illustrated by the fact that tumour cell growth was markedly
increased when the cells were implanted with irradiated
MEFs, as opposed to implantation with live MEFs. However,
implantation of Caspase-3� /� irradiated MEFs did not
stimulate proliferation, outlining a role for this specific caspase
in the paracrine response leading to tissue regeneration. The
authors also identified a crucial link between Caspase-3 and
b-catenin signalling. Importantly, Huang et al.54 pre-clinical
study also addressed the clinical difficulties associated with
appropriate management of patients with resistant cancers
with relapse. In the cohort of patients studied, high levels of
Caspase-3 correlated with high levels of tumour recurrence
and also a shorter survival time. This contrasts starkly with the
traditional view that Caspase-3 and -7 activation is associated
with successful therapy responses. It remains to be shown in
future pre-clinical and clinical studies whether, and in which
cancers, the activation of Caspase-3, and potentially also
Caspase-7, may accelerate the repopulation of tumours, and
may therefore represent important predictive biomarkers of
therapy resistance and recurrence.
These recent findings may also have important therapeutic

implications. Clearly, Caspase-3- and -7-dependent apopto-
sis is fundamental in chemotherapy-induced tumour regres-
sion, particularly in those tumours that are sensitive to effector
caspase activation. Caspase-independent cell death path-
ways however also exist, and mitochondrial outer membrane
permeabilisation rather than executioner caspase activation is
considered as the ‘point-of-no-return’.67,68 Inhibition of
Caspase-3(-7) paracrine signalling may be an effective
therapy particularly in chemoresistant tumours that show a
less favourable patient outcome. Pan-caspase inhibition,
rather than specific inhibition of Caspase-3/-7, may also be
an interesting strategy, as it may activate alternative forms of
cell death, such as necroptosis.26 However, pan-caspase
inhibition in vivo may also increase the potential for non-
specific adverse effects. Antagonising downstream effectors
of Caspase-3 paracrine signalling, such as PGE2 or compo-
nents of the Wnt signalling pathway, may also represent a
novel approach to halt, or at least impede, tumour cell
repopulation following chemotherapy. These approaches
could offer an interesting alternative and warrant further
investigation. Specific targeting of Caspase-3 has already
been suggested to inhibit cell proliferation in a lung cancer
xenograft tumour model. A combination of radiotherapy and
Caspase-3 inhibition significantly delayed the growth of
tumours, and reduced tumour vascularisation when com-
pared with controls. The treatment regime was also well
tolerated.69 The recent work by Huang et al.54 also alludes to
the potential of Caspase-3 inhibition as an approach to
enhance patient response to radiotherapy. This group
established a xenograft model using parental MCF-7 cells,

which are naturally deficient in Caspase-3. Following radiation
tumours in this model disappeared completely and did not
re-grow during the course of the study. In contrast, in a
xenograft model injected with MCF-7 cells transduced to
express Caspase-3, tumours grew at a faster rate and were
significantly more resistant to radiotherapy than the MCF-7
parental model, indicating that inactivity of Caspase-3 in
tumour cells can render the tumour more susceptible to
radiotherapy. Specific inhibition of Caspase-3 in concert with
chemotherapy may be an interesting, novel approach for the
treatment of those tumours characterised by fractional cell
killing, resistance and relapse.
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