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Programmed cell death in the plant immune system

NS Coll1, P Epple1 and JL Dangl*,1,2,3,4

Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and
similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to
infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved
strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The
hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms
reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the
molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered
caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control
across both kingdoms.
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Immune Surveillance Systems in Plants and Animals

The interaction between a pathogen and its host is sophisti-
cated and dynamic. Disease develops when the pathogen is

able to evade the multiple layers of host defenses. The

immune system of an organism has been tailored through

evolution by a long history of warfare with its invaders. In

contrast to most animals, plants are sessile organisms, they

lack a circulatory system and their cells are framed with a rigid

cell wall. These evolutionary constraints have resulted in the

evolution of a primary cell-autonomous immune system.

Despite these fundamental differences between the two

kingdoms, plants and animals share striking similarities in

their innate immune systems, some of which tell a story of

likely convergent evolution.1 Immune systems discriminate

self from non-self, and activate tightly regulated pre- and post-

invasion defense responses to minimize the damage inflicted

by harmful agents. The first line of defense in both plants and

animals is provided by pattern recognition receptors (PRRs),

which recognize microbe- or danger-associated molecular

patterns (MAMPs and DAMPs, respectively), and trigger

immune signaling (Figure 1). Plant PRRs are transmembrane

receptors.2,3 The best-studied class of plant PRRs are

receptor-like kinases (RLKs), which feature an ectodomain
of leucine-rich repeats (LRRs) involved in MAMP perception,
and an intracellular kinase domain, involved in signal
transduction relay via MAPK cascades, resulting in MAMP-
triggered immunity (MTI).4

Typical animal extracellular PRRs, called Toll-like receptors
(TLRs) possess an intracellular Toll-interleukin-1 (IL-1)
receptor domain (TIR) that recruits the kinases IRAK or RIP
via adaptor proteins, inducing expression of antimicrobial
defense molecules.5 These kinases belong to the same
functional class of non-RD kinases as plants, and they are
linked to innate immune responses in both kingdoms.6

Although plants and animals evolved under very different
selective pressures, both evolved similar sensors that
converge onto the same generic function: to alert the
organism about the presence of non-self.7

By definition, pathogens are microorganisms and viruses
that are able to evade or suppress PRR-based defenses.
They do so by deploying various effectors, determinants of
virulence on susceptible hosts via MTI suppression, into the
host cell.4,8 Successful pathogens are then faced with another
hurdle, evolved by hosts to recognize the presence of their
effectors and of intracellular MAMPs. In plants, a second
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intracellular class of innate immune receptors is activated
via recognition of pathogen effectors, resulting in effector-
triggered immunity (ETI). ETI is mediated by nucleotide-
binding domain, LRR (NB-LRR) disease resistance proteins.
Their structure is very similar to Nod-like receptors (NLRs) in
mammals.9 Both are intracellular proteins that contain a
central nucleotide-binding domain involved in activation
and multimerization9,10 and an LRR domain. In addition to
structural similarities, NLRs and NB-LRRs have shared
function and their stability is regulated by a chaperone
complex containing HSP90 and SGT1.11–13 Both NB-LRRs
in plants and NLRs in mammals are classified according to
their N-terminal domain architecture. Two main classes of
plant NB-LRRs have been described: CC-NB-LRRs contain a
predicted coiled-coil N-terminal domain and TIR-NB-LRRs
carry N-terminal homology to the intracellular TIR domain of
TLRs. In mammals, the NLR family is divided into five
subfamilies with different N-terminal effector domains.14 The
N-termini of NLRs mediate protein–protein interactions with
downstream signaling partners.
Both NB-LRRs and NLRs act as intracellular immune

sentinels. NB-LRRs have evolved to recognize specific
pathogen effector proteins, which are delivered into the host
cytosol by a broad range of pathogens using various delivery

systems. An effective recognition system must be able to
sense and respond to a multitude of effectors, since each
pathogen delivers its unique repertoire.15 In plants, effector
recognition can occur by direct binding of the NB-LRR protein
or indirectly, via an intermediate protein. The guard hypo-
thesis16,17 explains indirect recognition, which occurs after an
effector modifies a particular host protein (guardee) that is
monitored by a particular NB-LRR (guard). Plants do not
appear to express somatic recombination-based diversity
generation in their immune system, as do animal cells to
generate the familiar T- and B-cell antigen receptors. There-
fore, sensing of ‘modified-self’ accounts for a powerful
recognition system, that can manage with a limited set of
receptors an effective defense response.
In animals, the mechanism by which NLRs sense

MAMPs or DAMPs to trigger an appropriate immune response
is not fully understood. In vivo direct recognition has not
been proven and recent models suggest that NLR activation
could occur indirectly as a result of the membrane damage
inflicted by pathogens that are either able to reach the
cytoplasm, or that accidentally deliver MAMPs via their
secretion systems along with effector proteins.18,19 In this
sense, NLRs could be conceived as guard proteins similar to
plant NB-LRRs.20

Figure 1 Innate immune pathways in plants and mammals. In both plants (left) and mammalian (right), cells pathogen detection by membrane and intracellular innate
immune receptors leads to signaling cascades that culminate in expression of defense-related genes. Defense mechanisms eventually result in programmed cell death in both
kingdoms. This diagram exemplifies hypersensitive response cell death mediated by metacaspase-1 in plants and caspase-1-mediated cell death in animals
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Cell Death at the Center of Immune Responses

Pathogen recognition via NLRs in animals and NB-LRRs in
plants leads to inhibition of pathogen growth, which is often,

but not always, accompanied in plants by the hypersensitive

response (HR), a form of programmed cell death localized at

the site of attempted pathogen invasion (Figure 2a). The first

observations of HR date back to 1902 in the wheat-Puccinia

glumarum pathosystem,21 and the counter-intuitive term

‘hypersensitiveness’ was coined in 1915,22 to describe a

pathogen-triggered cell death reaction that correlated with

disease resistance in wheat infected with Puccinia graminis.

Morphologically, HR is a specific and unique type of cell death.

Its hallmarks, some of which are typical for different forms of

animal cell death, include cytoplasmic shrinkage, chromatin

condensation, mitochondrial swelling, combined with other

characteristics that are plant specific, such as vacuolization

and chloroplast disruption during the final stages.23

The chloroplast has a central role in defense responses and
HR in plants. First, it constitutes a very important source of

defense signaling molecules such as reactive oxygen species

(ROS), reactive nitrogen oxide intermediates (NOI) and the

defense hormones salicylic acid (SA) and jasmonic acid (JA).

Second, in many cases, light is required for HR development.

Third, several pathogen effectors have chloroplast localiza-

tion signals,24 and in some cases they have been shown to

suppress immunity.25,26

In plants, the molecular events that lead to HR during ETI
are partly overlapping with those associated with MTI,

including accumulation of SA, ROS and NOI, activation of

MAPK cascades, changes in intracellular calcium levels,
transcriptional reprogramming and synthesis of antimicrobial

compounds.23 Compared with MTI, ETI is typically an

accelerated and amplified response, suggesting that quanti-

tative rather than qualitative differences account for HR

induction.4

In animals, naturally occurring cell death was first reported
in the 19th century27 and many years later the term apoptosis

was defined.28 Caspases, a family of cysteine proteases that
cleave their substrates after an aspartic acid residue,
emerged as the orchestrators of this cell death process.
Remarkably, the first caspase discovered in mammals was
the IL-1b-converting enzyme (ICE), later known as caspase-1,
which does not participate in apoptosis, but does control
inflammation and pyroptotic cell death (see below) down-
stream of NLR activation.8,29 During the last decade, an
increasing number of cell death morphologies with mixed
features have been described in mammals, potentially
offering a parallel to plant HR, and programmed cell death
classification has become a complex task. A thorough
compilation of the morphological/biochemical/functional
criteria to define various sorts of cell deaths has recently
been published.30

In mammals, several types of cell death have been reported
in response to infection. Because these are often associated
with NLRs, it may be instructive to view them as possible
analogs of pathogen-dependent HR in plants (Figure 2).
Pyroptosis is a pro-inflammatory form of cell death initially
described as caspase-1-dependent necrosis in macro-
phages31 (Figure 2b). Pyroptosis has been reported in
response to infection with several bacteria32 and viruses.33

Caspase-1 activation occurs within molecular platforms
known as inflammasomes.34 The best studied to date are
the NLR inflammasomes, which sense mostly MAMPs and
DAMPs.14 These supramolecular complexes are assembled
via NLR N-terminal domain homotypic interactions. Once
activated, the NLRs within the inflammasome bind the
N-terminal caspase activation recruitment domain (CARD) of
caspase-1 directly or via the adaptor PYD-CARD protein ASC
(apoptosis-associated speck-like protein containing a caspase-
activating recruitment domain). Once recruited to the inflam-
masome, caspase-1 is activated by induced proximity and
processes the inactive precursors of IL-1b and IL-18 into their
mature forms. Caspase-1 also regulates the release of these
and other pro-inflammatory cytokines into the extracellular
millieu.35 These secreted molecules are instrumental for

Figure 2 Cell death modalities in response to infection. Diagram representing some of the characteristic features of different types of programmed cell death that can
occur in response to infection in plants and mammals. HR cell death in plants (a) and pyroptosis (b) and Necroptosis (c) in mammalian cells. See the text for details
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inflammation, cytoprotection and tissue repair. Interestingly,
cytokine maturation is genetically separable from pyroptotic
cell death: a recent report has shown that ASC-independent
inflammasomes can activate caspase-1 without auto-
proteolysis, promoting cell death without processing
IL-1b/IL-18.36 In contrast to ASC-containing inflammasomes,
which form a single large cytoplasmic speckle, no such
large structure is generated by ASC-independent
inflammasomes.36

The precise mechanism by which caspase-1 leads to cell
death has also been investigated by looking at caspase-1
substrates during infection and inflammation. The caspase-1
digestome includes chaperones, cytoskeletal maintenance
components and proteins involved in energymetabolism,37 as
well as caspase-7,38 which has been shown to be activated
downstream of NLRC4 inflammasome during bacterial infec-
tion.39 However, it is still not clear why pyroptotic cells die.
Permeabilization of the plasmamembrane, which presumably
participates in protein secretion at early stages of pyroptosis,
can be the cause of later cell death due to ruptures caused
by cytoplasmic swelling.40 This feature of pyroptosis is shared
with another cell death modality: programmed necrosis or
necroptosis41 (Figure 2c). This alternative form of pro-
grammed cell death is in most cases initiated by stimulation
of the extrinsic apoptotic pathway when caspases are absent
or inhibited.42 It can also be triggered after PRR activation, by
a mechanism not yet characterized.42 Generally, necroptosis
is mediated by RIP1–RIP3 kinase complex formation.43,44

RIP1 is a pleiotropic protein that canmediate both pro-survival
(via NF-kB activation) and pro-cell death pathways (apoptosis
or necroptosis).45 During apoptosis, active caspase-8 can
cleave RIP1 and RIP3 and abolish their kinase activity,
preventing them from initiating necroptosis.43When apoptosis
is blocked, necroptosis becomes the predominant form of
cell death.42

Increased ROS levels are a hallmark of necroptosis and
may be one of the main causes of necroptotic cell death.
Enhanced ROS production during necroptosis can be
mediated by mitochondria, due to a RIP3-dependent increase
in energy metabolism,46 and/or by the NADPH oxidase
NOX1, which is recruited to the plasma membrane by
RIP1.47 In plants, apoplastic ROS (superoxide) generated
by the plasma membrane NADPH oxidases are essential for
HR development and activation of systemic immunity,48

drawing a possible mechanistic connection between these
two types of cell death. ROS produced in other plant
organelles as the chloroplast, mitochondria and peroxisomes
also contribute to the HR response and, in fact, compartmen-
talization might be essential for ROS signaling functions
during defense.49

Necroptosis has a pivotal role in inflammation and
immunity. Similar to pyroptotic cells, necroptotic cells secrete
a broad array of pro-inflammatory molecules that signal
through PRRs.50 Necroptosis has been reported to occur in
response to infection by certain viruses that block apoptosis in
the host cell as a colonization strategy.51 Because of the pro-
inflammatory nature of necroptosis, it may constitute not only
a backup mechanism for virus clearance when apoptosis is
inhibited, but also a way to engage the immune system
leading to a systemic response.

Caspase-independent necroptosis and caspase-1-
dependent pyroptosis constitute two pro-inflammatory, ex-
plosive cell death modalities. In contrast, apoptosis, mediated
by apoptotic caspases, is in most cases an immunologically
silent process, since cell corpses are cleared by phagocytes.
In the context of infection, it might be beneficial to minimize
tissue damage during the immune response. Apoptosis can
be triggered upon pathogen attack, and several lines of
evidence indicate that it is essential for clearance of certain
pathogens.52

Pathogen Strategies to Evade Cell Death

The fact that many pathogens have evolved strategies to
inhibit different types of cell death further underscores its
fundamental role in fighting infections. Inmammals, apoptosis
can be efficiently blocked by several pathogens via inhibition
of apoptotic caspases, prevention of cytochrome c release or
activation of pro-survival pathways.53 Necroptosis has been
shown to be inhibited by viral inhibitors during infection51

and pyroptosis can be blocked through caspase-1 inhibition
by pathogenic bacteria and viruses.32 In some instances,
suppression of pyroptosis by a pathogen leads to activation of
autophagy,54,55 highlighting the complex circuitry involved in
cell death processes leading to pathogen clearance.
Plant (hemi)biotrophic pathogens feed on living cells,

therefore they must evade host detection and death of the
invaded plant cells. Thus, they have evolved mechanisms to
suppress HR using specific effectors delivered into the cell via
diverse secretion systems. Several Pseudomonas syringae
pathovar tomato DC3000 effectors are capable of suppres-
sing HR in tobacco and Arabidopsis.56,57 HR in tobacco can
also be suppressed by Xanthomonas campestris pv. vesica-
toria effectors.58 Oomycete effectors can also inhibit HR in
plants.59–61 The mechanisms by which HR is suppressed
remain unknown, but systematic characterization of the
increasing number of effectors identified will help us under-
stand how they interfere with plant defenses, including the
control of HR.
In contrast to (hemi)biotrophs, necrotrophic pathogens

take their nutrients from dead or dying cells. Necrotrophs have
developed mechanisms to induce cell death in their hosts
by secreting phytotoxins and cell wall degrading enzymes,
resulting in the formation of expanding necrotic lesions in the
infected plant tissue.62,63 While (hemi)biotrophs have evolved
strategies to suppress HR, some necrotrophs use the plant
HR machinery as a strategy to promote virulence.64 The
necrotrophic fungus Cochliobolus victoriae, originally de-
scribed as the causal agent of Victoria blight in oats,65

secretes the toxin Victorin, required for pathogenicity.66 This
fungus hijacks HR via activation of a CC-NB-LRR protein
LOV1, which confers sensitivity to victorin and susceptibility
to C. victoriae in Arabidopsis.67 In oats, loss of function
mutations that eliminate toxin sensitivity and susceptiblility to
C. victoriae also eliminate specific recognition and resistance
to a biotrophic fungus,Puccinia coronata.68 Thus, as selection
favors resistance to the biotrophic fungus, susceptibility to the
necrotrophic pathogen is assured. It would be of interest to
study the allele frequency of this gene in wild oats and their
progenitors.
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Regulators of Plant Cell Death

The chain of events leading to cell death in plants after effector
recognition via NB-LRR receptors is not fully elucidated. Two
separate signaling modules regulate NB-LRR proteins: non-
race-specific disease resistance 1 (NDR1) regulates in most
cases immune responses mediated by CC-NB-LRR proteins,
whereas the enhanced disease susceptibility 1 (EDS1)/
phytoalexin deficient 4 (PAD4)/senescence-associated gene
101 (SAG101) complex mediates TIR-NB-LRR signaling.69

These two systems integrate redox signals downstream of
NADPH oxidase49 leading to SA accumulation,70,71 which has
a central role in defense responses. ROS and SA act
synergistically to drive HR.72

Mutants exhibiting HR-like phenotypes have been long
described in many plant species, including corn,73,74 tomato,75

barley76 and Arabidopsis.77 These mutants, also known as

lesion mimic mutants, are classified into initiation and

propagationmutants; initiationmutants inappropriately induce
PCD and form localized, necrotic spots, whereas propagation

mutants cannot stop it, once it has been initiated.78 A forward

genetic screen for mutants with HR-like lesions and char-

acteristics of defense responses, including molecular and

biochemical markers and enhanced disease resistance,

revealed the lesion simulating disease resistance (lsd) class
of mutants.79 Two of these genes have been cloned: LSD4, an

FtSH protease (PE, Jürg Schmid and JLD, unpublished data;

see ref. 80 for details) and the zinc-finger protein LSD1,81 a

negative regulator of superoxide-induced cell death.82 LSD1

protects plants from ROS-induced stresses and conse-

quently, lsd1mutant plants are characterized by runaway cell

death (rcd).79,83 Therefore, lsd1 can be regarded as a
sensitized mutant with respect to cell death initiation, and it

has been instrumental in identifying other components of the

signaling pathway leading to programmed cell death. For

example, EDS1 and PAD4 functions are required for lsd1 rcd

induced by abiotic stress.83 EDS1, PAD4 and NDR1 are also

required for full lsd1 rcd in response to pathogen infection.84

EDS1 and PAD4 regulate a ROS- and SA-dependent signal
amplification loop, which in turn is modulated by LSD1.84

The LSD1 protein contains three internally conserved
zinc-finger domains of the C2C2 class (consensus:

CxxCRxxLMYxxGASxVxCxxC) (Figure 4a).81 This zinc-finger

motif is found in plants, algae and protozoa, but not in animals.

Only six other Arabidopsis proteins contain one or more
LSD1-like zinc-finger domains: the LSD-one-like proteins

LOL1 (At1g32540)85 and LOL2 (At4g21610), the metacas-

pases AtMC1 (At1g02170), AtMC2 (At4g25110) and AtMC3

(At5g64240; although the zinc-finger motif is non-canonical)

and LOL6 (At1g79350) (Figure 4a). Yeast-two-hybrid assays

demonstrating interaction between the zinc-finger domains of
LSD1, LOL1 and AtMC1 (Figure 3) have been validated by

genetic approaches: both LOL1 and AtMC1 are required for

full lsd1 rcd. Thus, LOL1 and AtMC1 are positive regulators

of PCD.85,86 Surprisingly, AtMC2 functions as a negative

regulator of cell death86 (see below). Furthermore, AtbZIP10

(At4g02640) function is required for lsd1 rcd and both R-gene

mediated and basal defense responses. Intriguingly,
AtbZIP10–LSD1 interaction in planta prevents AtbZIP10

translocation to the nucleus.87 A yeast-two-hybrid screen for

LSD1 interactors revealed 10 additional putative LSD1
interaction partners (Mike Richberg, Hironori Kaminaka and
JLD, unpublished data; Figure 3). It is conceivable that LSD1
acts as a scaffold protein in the cytoplasm: sequestering
positive regulators of cell death (LOL1, AtMC1, AtbZIP10)
prevents their function, thereby inhibiting PCD.

The Type I Metacaspase Regulatory Module in HR

Despite the lack of close caspase homologs in plants, several
studies using caspase-specific peptide inhibitors suggested
the presence of HR-induced caspase-like protease activities
in plants.88–91 The vacuolar processing enzyme VPE in
Nicotiana benthamiana and its homolog VPEgamma in
Arabidopsis have caspase-1-like activity during HR.89,91

Additionally, vacuolar fusion to the plasma membrane
mediated by a caspase-3-like activity of PBA1, a plant
proteasome subunit, was suggested to be a functionally
relevant early event in NLR-mediated HR.88

More than a decade ago, two new families of caspase-like
proteins, metacaspases and paracaspases, were identified
in silico92 (Figure 4b). Similar to caspases, they contain a
conserved histidine-cysteine catalytic dyad and homology
modeling predicts a caspase-hemoglobinase fold.92,93 Para-
caspases have been found in animals and slime molds,
whereas metacaspases are present in plants, fungi, protozoa
and cyanobacteria.92 These cysteine proteases differ from
caspases in their substrate specificity; caspases cleave their
targets after an aspartate residue, while paracaspases are
arginine specific94,95 and metacaspases can cleave both after
an arginine or a lysine.96 The human paracaspase, also
known as mucosa-associated lymphoid tissue lymphoma
translocation protein 1 (MALT1) has an N-terminal extension
containing a death domain (DD), which is present in several
proteins involved in apoptotic signaling. However, MALT1
seems to act as an anti-apoptotic scaffold protein, bridging
several pathways that converge into NF-kB activation during
innate and adaptive immune responses.97

Figure 3 The LSD1 ‘deathosome’. Diagram depicting interactions between
known cell death regulators and their yeast-two-hybrid interacting partners.
The genes without annotated function are shown in gray
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Eukaryotic metacaspases have been classified into type I
if they bear an extension in their N-terminal domain, and type II
if there is no such extension and they have a long linker region
between the putative catalytic subunits.92 Type II metacas-
pases are present in algae and land plants, but not in protozoa
or fungi. A single metacaspase present in yeast, YCA1, can
serve both pro- and anti-cell death functions,98,99 as well as
other functions unrelated to cell death regulation.100,101 In
contrast to a single protein with dual functions, two different
Arabidopsis type I metacaspases, AtMC1 and AtMC2, have
opposing roles during cell death control (detailed below).86

The N-terminal extension of metacaspases varies
among species. Fungi, protozoa and algae generally have a

proline-rich domain. Some plant type I metacaspases do not
have any recognizable motif in their N-termini, while others
feature the conserved, plant-specific LSD1-like zinc-finger
domain before the proline-rich domain (Figure 5). These
motifs usually participate in protein–protein interactions, and
could indicate that oligomerization is important for type I
metacaspase activation, analogous to initiator/inflammatory
caspases. Recruitment of a limited set of N-terminal exten-
sions through evolution could have driven diversification and
functional specialization of this protein family.
Several lines of evidence suggest a function for metacas-

pases in plant HR. Infection was shown to induce the express-
ion of ametacaspase in tomato102 andN. benthamiana103 and

Figure 4 Domain structures of (a) Arabidopsis proteins containing LSD1-like zinc-finger domains and (b) caspases and caspase-like proteins. CARD, caspase activation
recruitment domain. DD, death domain; IG, immunoglobulin domain; Zn Finger, LSD1-like zinc-finger domain (C2C2 Class); Pro, prolin-rich domain; p20 and p10, caspase
(-like putative) catalytic subunits

Figure 5 Classification of all the metacaspases found in the Viridiplantae phylum into type I (with or without the LSD1-like zinc-finger domain) or type II metacaspases,
according to Phytozome (http://www.phytozome.net/)
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several metacaspase genes are pathogen inducible in
Arabidopsis.104 Analysis of metacaspase function using
knockout or knockdown mutants indicated roles in suscept-
ibility to necrotrophic or hemi-biotrophic pathogens.103,105 We
recently demonstrated that AtMC1 and AtMC2 antagoni-
stically control HR downstream of NB-LRR activation86

(Figure 6a) using Arabidopsis as a model plant to study the
immune system in plants.106

AtMC1 is a positive regulator of cell death. It interacts via its
N-terminal prodomain with the second and third zinc fingers of
LSD1. atmc1 knockout mutants suppress cell death in lsd1
and also bacterial- and oomycete-triggered HR. HR mediated
by both CC- and TIR-NB-LRR intracellular immune receptors
is severely attenuated in atmc1 plants, indicating conver-
gence of the two pathways into a single cell death output.
Interestingly, pathogen growth restriction is not affected by
HR suppression, indicating that disease resistance and cell
death can be uncoupled. AtMC2 acts genetically as a negative
regulator of AtMC1. AtMC2 over-expression mimics atmc1
mutant phenotypes, whereas the lack of AtMC2 results in
enhanced HR and accelerates cell death in an lsd1 back-
ground. Similar to some animal caspases, the function of both
AtMC1 and AtMC2 is negatively regulated by their N-terminal
domain. Since AtMC1 interacts with LSD1, prodomain
removal could result in release of the putative active form
from the LSD1-anti-cell death scaffold into the cytoplasm.
The mechanism by which AtMC2 regulates AtMC1 remains

enigmatic. AtMC2 does not interact with LSD1 or AtMC1 in
yeast-two-hybrid or in planta co-immunoprecipitation assays.
While AtMC1 activity requires caspase-like catalytic residues,
AtMC2 function is independent of its putative catalytic
cysteines. In mammals, there are several examples of atypical
caspases or caspase-like proteins modulating the activity of a
caspase independent of their protease activity.107–113

Caspase-12 has recently emerged as a negative regulator
of immune responses in mammals, causing higher suscept-
ibility to colitis, bacterial infection and sepsis.110,112–114

Mechanistically, caspase-12 can either inhibit caspase-1,
dampening the production of pro-inflammatory cyto-
kines112,114 or suppress the NF-kB pathway, independent of
caspase-1110,115 (Figure 6b). Cellular FLICE-inhibitory protein
(cFLIP) is a proteolytically inactive caspase-8 homolog that
acts as a dominant-negative inhibitor of caspase-8 in the
apoptotic extrinsic pathway of mammals.108,111 cFLIP also
regulates caspase-8 function in lymphocyte survival and
proliferation.107 This non-apoptotic function of caspase-8 can
also be mediated by the paracaspase MALT1, independent of
its proteolytic activity109 (Figure 6c).
In line with observations using the plant AtMC2, and animal

cFLIP and MALT1, the catalytic activity of caspase-12 is not
required to exert its regulatory function.110,112,113 Caspase-12
inhibition of NLR-mediated innate immunity in mammals 110

recapitulates the role of AtMC2 inhibiting AtMC1-dependent
HR, mediated by the analogous NB-LRR proteins in plants.86

The sum of these studies suggests that cell death control
mediated by the caspase/metacaspase superfamily is
coupled to intracellular innate immune receptor function in
both animals and plants.

The HR: Cause or Consequence?

In plants, a fundamental question remains unanswered: why
does HR occur? Traditionally, HR was envisioned as the plant
mechanism that prevented pathogen growth in incompatible
plant–pathogen interactions and therefore causal to disease
resistance. This notion was first challenged by Kiraly et al.116

in a study showing that it is not plant cell death that inhibits
pathogen proliferation. Since then, several natural examples

Figure 6 Metacaspases/caspases networks in plants and animals. (a) In plants, metacaspase-1 (AtMC1) positively regulates HR cell death mediated by NB-LRR
recognition of the invading pathogen at the site of infection. LSD1 negatively regulates cell death propagation in cells surrounding the infection site presumably by binding to
AtMC1 and holding it inactive in the cytoplasm. AtMC2 negatively regulates AtMC1 function by an unknown mechanism. (b) In mammals, caspase-12 negatively regulates
caspase-1 functions in pathogen clearance and sepsis resistance and (c) cFLIP is a negative regulator of caspase-8 function in the apoptotic extrinsic pathway. Caspase-8
function in lymphocyte proliferation is regulated by both cFLIP and MALT1
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of plant–pathogen interactions resulting in resistance without
cell death have been reported, in particular the potato Rx and
barley Rrs1 disease resistance genes.117–124 Additionally,
suppressing caspase-like activities (unrelated to metacas-
pases) in plants inhibits pathogen-induced cell death without
affecting disease resistance.89,125 As described above,
elimination of the metacaspase AtMC1 results in drastically
reduced HR after infection with incompatible pathogens,
but bacterial growth restriction remains unaffected in this
mutant.86 These studies have added new components to the
sparsely populated signaling pathways that translate NLR/
NB-LRR recognition of pathogens into downstream activation
of cell death. The mechanisms by which plants stop pathogen
growth require further analysis.
Cell death and restriction of pathogen growth leading

to disease resistance are genetically separable in both
animals36 and plants,86 at least for the pathogens tested in
these studies. In plants, HR cell death may occur simply as a
consequence of the escalated signaling at the interface of
plant–pathogen interactions, and the consequent rise in toxic
intermediates that lead to both host and pathogen cell death. If
HR is not adaptive in restricting pathogen growth, it may be
adaptive for the generation of long range signals, mediated by
ROS and SA, that induce the systemic acquired resistance
that primes a plant for secondary infection.126–128
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