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Review
Tumour cell survival signalling by the ERK1/2 pathway
K Balmanno*' and SJ Cook*"

Several advances in recent years have focused increasing attention on the role of the RAF-MEK-ERK1/2 pathway in promoting
cell survival. The demonstration that BRAF is a human oncogene mutated at high frequency in melanoma, thyroid and colon
cancer has provided a pathophysiological context, whilst the description of potent and highly selective inhibitors of BRAF or
MEK has allowed a more informed and rational intervention in both normal and tumour cells. In addition, separate studies have
uncovered new mechanisms by which the ERK1/2 pathway can control the activity or abundance of members of the BCL-2
protein family to promote cell survival. It is now apparent that various oncogenes co-opt ERK1/2 signalling to de-regulate these
BCL-2 proteins and this contributes to, and even underpins, survival signalling in some tumours. New oncogene-targeted
therapies allow direct or indirect inhibition of ERK1/2 signalling and can cause quite striking tumour cell death. In other cases,
inhibition of the ERK1/2 pathway may be more effective in combination with other conventional and novel therapeutics. Here, we
review recent advances in our understanding of how the ERK1/2 pathway regulates BCL-2 proteins to promote survival, how this
is de-regulated in tumour cells and the opportunities this might afford with the use of new targeted therapies.
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The RAF-MEK-ERK1/2 pathway has often played ‘second
fiddle’ to the PI3K pathway in terms of cell survival signalling.
Early studies identified and focused on the role of PI3K and
the identification of PKB/Akt as an oncogene that prevented
apoptosis fuelled interest in the role of the PISK-PDK1-PKB
pathway downstream of survival factors and mutant oncopro-
teins, notably RAS.! At the same time, studies defined the
importance of the RAF-MEK-ERK1/2 pathway in G1/S cell
cycle progression,? leading to a general perception that the
ERK1/2 pathway controlled cell cycle re-entry and the PKB
pathway controlled cell survival. However, the emergence of
credible evidence of ERK1/2-dependent survival signalling®®
made this convenient demarcation untenable and it is now
apparent that both pathways can contribute to cell prolifera-
tion and cell survival.

The first notable review of ERK1/2 survival signalling stated that
‘perhaps the primary and most defined survival signalling cascade
in many cell types involves PI3K and its downstream target Akt or
protein kinase B’.® This may well be the case in ‘normal’ cells but in
tumour cells things are a little more complicated. As a result of
different oncogene mutations, tumour cells re-model their

signalling to acquire key cancer-specific traits” and the extent to
which different pathways are used for survival will depend on the
nature of the mutant oncoproteins. In this context, perhaps the
most important observation since Ballif and Blenis® reviewed
ERK1/2-dependent survival signalling has been the identification
of BRAF as a human oncogene.8 In addition, new mechanisms of
ERK1/2-dependent survival signalling have emerged in recent
years. In this review, we will describe these new mechanisms,
consider how tumours utilize ERK1/2 signalling for aberrant cell
survival and discuss the therapeutic opportunities this may afford.
We will first start by briefly reviewing how we define ERK1/2-
dependent survival signalling.

ERK1/2-Dependent Survival Signalling: Definitions and
Tools for Study

Survival factors and many oncoproteins can activate an array
of signalling pathways and it is important to define the
contribution of each pathway both to fully understand cell
survival signalling and to validate individual pathways as
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therapeutic targets. To deconstruct ERK1/2 survival signalling
we can ask whether it is necessary for cell survival response,
by the use of selective pathway inhibitors, or sufficient, by the
use of activated mutants of RAF or MEK.

Many studies defining the role of the ERK1/2 pathway have
used the MEK inhibitors, PD98059 or U0126.5 However,
PD98059 is not very potent and has poor solubility and both
drugs can partially inhibit MEK5 and thereby inhibit the parallel
ERK5 pathway® so their use requires that the potential
involvement of ERK5 is considered as a caveat The
second-generation MEK inhibitors, typified by PD184352
and AZD6244 (ARRY-142886), do not inhibit the ERK5
pathway at physiologically relevant doses and are now the
‘drugs of choice’ for selective inhibition of the ERK1/2
pathway.'®'2 The RAF inhibitor, BAY 43-9006, shows great
promise in the clinic but should be used with caution as a
research tool as it also inhibits a subset of receptor tyrosine
kinases.' In terms of specificity for the activated, mutant form
of BRAF PLX4720 probably represents the most potent and
selective option at present.' It is also desirable to use
molecular genetic intervention such as expression of inter-
fering mutants of MEK1/2 or ERK1/2, or the ERK1/2-specific
phosphatase DUSP6, which inhibits ERK1/2-dependent
signalling without effect on ERK5.®

Constitutively active mutants of RAF or MEK can be
transiently or stably expressed in cells to examine their effect
on cell survival; these constructs fail to activate ERK5 and
their use with a MEK inhibitor can define ERK1/2-dependent
survival. However, transient expression of these constructs
causes a slow increase in ERK1/2 activation over many hours,
making it difficult to define direct and indirect effects. The
conditional kinase ARAF-1:ER*'® currently represents the
best means of rapidly and specifically activating ERK1/2.
However, it is still important to differentiate between direct
effects of ERK1/2 signalling and indirect effects because of
ERK1/2 influencing the activity of other pathways. For
example, activation of ARAF-1:ER* can protect fibroblasts
and epithelial cells against death arising from serum with-
drawal or loss of ECM attachment (anoikis);%>'”"'® however, in
MCF-10A cells the protection provided by ARAF-1:ER* is
because of expression and secretion of EGFR ligands, which
act in an autocrine manner to activate PI3K-dependent cell
survival.’® In contrast, protection afforded by ARAF-1:ER* in
other cell systems appears to be a more direct, cell
autonomous effect of ERK1/2.4517 Clearly, both mechanisms
are important but in this review we will focus on cell
autonomous mechanisms of cell survival signalling by
ERK1/2 and in particular on the regulation of BCL-2 proteins.

The BCL-2 Protein Family

The cell intrinsic apoptosis pathway is regulated by the BCL-2
proteins, which control the release of cytochrome c¢ from
mitochondria, triggering the activation of caspases and cell
death. The BCL-2 family consists of pro-survival and pro-
death proteins that share a number of BCL-2 homology (BH)
domains (BH1-4)."® In the pro-survival proteins (such as
BCL-2, BCL-x. and MCL-1) the BH1-3 domains form a
hydrophobic pocket that can bind the BH3 domains of certain
other family members. The multi-domain pro-apoptotic
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proteins (BAX and BAK) also use BH1-3 to form a
hydrophobic pocket and in many viable cells are found in
complex with pro-survival BCL-2 proteins. Finally, the BH3-
only proteins (BOPs) share only the BH3 domain and are
otherwise structurally diverse reflecting their various modes of
regulation in response to cell stress or cell survival signals.?°
Although the details are beyond the scope of this review, BAX
and/or BAK are normally sequestered by pro-survival BCL-2
proteins in viable cells. In response to stress-induced signals,
BOPs are either expressed or activated and bind to pro-
survival BCL-2 proteins, promoting the release of BAK/BAX,
which can then oligomerize, causing mitochondrial outer
membrane permeabilization and release of cytochrome c.

ERK1/2-Dependent Regulation of BH3-Only Proteins

Regulation of BIM binding properties and stability. The
BIM gene gives rise to three common splice variants; short
(BIMs), long (BIM,) and extra-long (BIMg_), of which BIMg,_ is
by far the most abundant in most cell types. Among other
responses BIM appears to be important in death arising from
withdrawal of survival factors, which results in substantial
increases in BIMg_ expression. Cytokine withdrawal leads to
inactivation of PKB, de-phosphorylation and nuclear entry of
FOXOB3A, which can then promote BIM expression.2! It has
been known for several years that ERK1/2 activation can
repress BIM mRNA levels."”” Recently, a potential
mechanism to account for this has emerged with the
demonstration that ERK1/2 can phosphorylate FOXO3A,
targeting it for proteasomal degradation;2? thus both ERK1/2
and PKB can inactivate FOXOSA by different mechanisms to
repress BIM (Figure 1). In addition to regulation of
transcription, BIMg_ is phosphorylated at multiple sites in
response to selective activation of the ERK1/2 pathway'”
and this has the effect of promoting the ubiquitination and
proteasome-dependent turnover of BIMg 2® (Figure 1).
BIMg_ is phosphorylated directly by ERK1/2 at up to four
different sites;?*2® the exon unique to BIMg, encodes three
ERK1/2 phosphorylation sites and a DEF-type ERK1/2
docking domain.?”:2® Of these three Ser®® (Ser®® in mouse
and rat) appears to be a key signal for BIMg_ turnover as
S%9A or S®°G mutants are defective in turnover, accumulate
to higher levels than wild-type protein, and may exhibit
enhanced toxicity.?+29:30

More recently, it has been demonstrated that ERK1/2
activation can inhibit the binding of BIMg_ to BCL-2 family
proteins such as BCL-x, and MCL-1.2%3" In serum-starved
cells newly synthesized BIMg_ associates with BCL-x,_ and
MCL-1 but re-stimulation of cells with growth factors promotes
the rapid dissociation of BIMg :BCL-x, or BIMg :MCL-1
complexes and activation of ERK1/2 is necessary and
sufficient for this®® (Figure 1). As BIMg,_ needs to engage
with pro-survival proteins to kill cells this represents an
additional survival mechanism. Furthermore, BIMg,_ mutants
with impaired binding to MCL-1 or BCL-x,_ exhibit accelerated
turnover, suggesting that ERK1/2-dependent dissociation of
BIMg, from pro-survival proteins may be the first step in its
proteasomal degradation.?>3' The precise mechanism of
degradation of BIMg,_ is unclear. It has been suggested that
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Figure 1 Regulation of BIM binding properties and stability by ERK1/2. The pro-apoptotic BH3-only protein BIM is expressed de novo following cytokine withdrawal and
binds to pro-survival proteins such as MCL-1, thereby releasing BAX or BAK to promote cell death. ERK1/2-catalysed phosphorylation of FOXO3A promotes its proteasomal
degradation, thereby preventing FOXO3A-dependent expression of BIM. In addition, BIMg,, the most abundant BIM splice variant, is phosphorylated directly by ERK1/2 on at
least three different sites. This promotes the dissociation of BIMg, from pro-survival proteins and targets BIMg, for poly-ubiquitination through the 26S proteasome. See text for

details

CBL is the E3 ligase responsible for poly-ubiquitination of
BIMg.;*2 however, others fail to detect binding of BIMg_ to
CBL and BIMg, is turned over normally in CBL—/— fibroblasts
arguing against this.%3

Regulation of BAD binding properties and stability. BAD
is inhibited by phosphorylation at three distinct sites
(Figure 2): Ser''2, catalysed by RSK; Ser's¢, catalysed
by PKB and Ser'®® catalysed by PKA. Early studies showed
that growth factor-stimulated phosphorylation of Ser''? was
inhibited by MEK inhibitors®*3® although Ser'3® phosphory-
lation was inhibited by PI3K inhibitors.®®%” RSK was
subsequently shown to be the kinase responsible for
phosphorylation of Ser''2383% Phosphorylation by RSK
or PKB inhibits BAD by facilitating its binding to 14-3-3
proteins although PKA-dependent phosphorylation of
Ser'®® within the BAD BH3 domain blocks interactions with
pro-survival proteins, causing BAD to dissociate from the
mitochondria.*°~*2 These three phosphorylation events may
cooperate; for example, the increased binding of BAD to
14-3-3 arising from phosphorylation of Ser''? and Ser'%® may
facilitate phosphorylation of Ser'®® by PKA*2 (Figure 2).
MSK1, a RSK-related protein kinase that is activated by
ERK1/2 or p38-dependent phosphorylation, can also
promote BAD phosphorylation at Ser''2, providing a further
ERK1/2-dependent input into BAD inhibition.**

Few studies have reported significant changes in BAD
abundance. However, it has recently been shown that
activation of the ERK1/2 pathway promotes the ubiquitination
and proteasome-dependent turnover of BAD that requires
RSK-dependent phosphorylation of Ser''2.4* This provides
the first evidence that the ERK1/2 pathway can promote
turnover of BAD (Figure 2) and raises several questions. First,
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the identification of the relevant E3 ligase for BAD will be of
great interest. Second, what contribution will BAD stabilization
make to proteasome inhibitor-induced cell death? Finally, is
the ERK1/2-induced turnover of BAD cell type-specific,
because in a previous study of ERK1/2-dependent BIMg_
turnover BAD was actually used as a negative control that did
not turnover in response to ERK1/2 activation.?® Such issues
should provide a greater insight into the physiological role of
BAD protein turnover in ERK1/2 survival signaling.

Regulation of BMF transcription/mRNA stability. Non-
transformed MCF-10A human mammary epithelial cells
undergo apoptosis when detached from their ECM
attachment (so called anoikis). This is accompanied by an
increase in BMF mRNA levels, which is also observed in a
variety of other epithelial cells, and knockdown of BMF
inhibits cell death in suspension.*® Interestingly, expression
of activated mutants of HRAS, MEK2, PI3K or PKB protected
cells from anoikis and also caused a substantial reduction in
BMF mRNA levels. Thus, both the ERK and PKB pathways
can repress transcription of BMF or reduce BMF mRNA
stability but the underlying mechanism is unclear.

ERK1/2-Dependent Regulation of Pro-Survival BCL-2
Proteins

There is abundant evidence that survival factors can use the
ERK1/2 pathway to increase the expression of several
pro-survival BCL-2 proteins, notably BCL-2, BCL-x,_ and
MCL-1, by promoting de novo gene expression in a variety
of cell types; for example, MEK inhibition caused a decrease
in BCL-2, BCL-x, and MCL-1 and apoptosis in pancreatic
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Figure 2 Regulation of BAD binding properties and stability by ERK1/2 signalling. In cells deprived of cytokines or treated with PI3K and MEK inhibitors BAD is
de-phosphorylated and binds to pro-survival proteins such as BCL-x, to promote cell death. In contrast, cytokines promote the phosphorylation of BAD, allowing it to be
sequestered by 14-3-3 proteins as a survival mechanism. PKB phosphorylates BAD at Ser'® whereas RSK, a direct substrate of ERK1/2, phosphorylates BAD at Ser' 2. This
dual phosphorylation may in turn facilitate phopsphorylation of Ser'® by cAMP-dependent PKA. Another ERK1/2-dependent kinase, MSK, has also been implicated as a
possible Ser'' kinase. In addition, it has recently been shown that activation of RAF promotes the ERK1/2- and RSK-dependent poly-ubiquitination and proteasomal
degradation of BAD; this is dependent upon phosphorylation of Ser''2. See text for details

cancer cells.*® There is a prominent role for CREB in
mediating the ERK1/2-dependent expression of these genes
by virtue of the fact that they all have CREB-binding sites in
their 5’ regulatory regions and the ERK1/2-dependent kinases
RSK or MSK can phosphorylate and activate CREB; this has
been reviewed previously.®

Regulation of MCL-1 protein stability. MCL-1 expression
is frequently elevated in tumours and tumour cell lines and is
associated with poor prognosis and drug resistance.*’
Among the pro-survival BCL-2 proteins a reduction in
MCL-1 abundance is most frequently observed upon
inhibition of the ERK1/2 pathway and this partly reflects
direct ERK1/2-dependent regulation of MCL-1. The MCL-1
protein exhibits a relatively short half-life and this is attributed
to the presence of a PEST domain residing in the N-terminal
extension preceding the BH domains; indeed, MCL-1
turnover is regulated by phosphorylation at two sites within
this PEST domain. Activation of ERK1/2 stabilizes MCL-1
and this is achieved through the direct ERK1/2-dependent
phosphorylation of Thr'®® within the PEST domain*®
(Figure 3). This may account for instances in which MCL-1
overexpression is correlated with hyper-activation of the
ERK1/2 pathway. However, it has also been reported that
phosphorylation at Thr'®® ‘primes’ MCL-1 for phosphorylation
at Ser'®® by GSK3p, which apparently enhances MCL-1 poly-
ubiquitination and degradation*® (Figure 3).

This reveals a very fine interplay between ERK1/2-
dependent stabilization and GSK3p-dependent turnover in
the control of MCL-1 protein levels and raises some important
questions. First, the only E3 ligase known to catalyse the

poly-ubiquitination of MCL-1 is MULE, which contains a
BH3-domain through which it binds to MCL-1 59 However, itis
presently unclear how phosphorylation at Thr'®® or Ser'®®
within the PEST domain is linked to dissociation or recruitment
of MULE to the BH3 domain-binding groove. Second, as
ERK1/2 can activate RSK, which in turn can phosphorylate
and inhibit GSK3,°! does RSK activation facilitate ERK1/2-
dependent MCL-1 stabilization by inhibiting GSK34? Finally,
how does activation of PKB interface with this ERK/GSK3/
regulatory pairing? It is well known that PKB can phosphory-
late and inhibit GSK3 and so activation of the PKB pathway
should stabilize MCL-1. Similarly, inhibition of PKB, which
activates GSK3p, results in downregulation of MCL-1.52
However, if GSK3p-dependent phosphorylation of Ser'®® is
dependent upon prior phosphorylation by ERK1/2 at Thr'®®
then turnover of MCL-1 following PI3K/PKB inhibition
(a therapeutically desirable event in cancer therapy) may be
dependent upon the presence of an active ERK1/2 pathway
and prior phosphorylation of Thr'®®. These latter predictions
are readily testable and underscore the complex interplay
between the ERK and PI3K-PKB pathways (Figure 3).

Oncogene Addiction and Evolved Dependency upon the
ERK1/2 Pathway

Clearly the ERK1/2 pathway can regulate several members of
the BCL-2 protein family to achieve cell survival. However,
many of these proteins (e.g., BIM, BAD, MCL-1, and so on)
are also controlled by other oncogene-regulated signalling
pathways, notably the PISK-PKB pathway; indeed, the use of
such redundant mechanisms is the rule rather than the
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Figure 3 Regulation of MCL-1 stability by ERK1/2 signalling. Withdrawal of cytokines or inhibition of the ERK1/2 pathway promotes the proteasome-dependent
degradation of MCL-1 whereas activation of ERK1/2 inhibits the degradation of MCL-1. ERK1/2 phosphorylates MCL-1 directly at Thr'®® within the PEST domain and this

stabilizes MCL-1. However, phosphorylation at Thr'®®

may also ‘prime’ MCL-1 for phosphorylation at Ser'®® by GSK3p thereby promoting its turnover. GSK3p is in turn

inhibited by both RSK and PKB so that there is a fine interplay between ERK1/2-RSK, PKB and GSK3p in the control of MCL-1 protein levels. The only E3 ubiquitin ligase
known to facilitate poly-ubiquitination of MCL-1 is MULE, which binds through a BH3 domain to the hydrophobic groove of MCL-1. It is not known how or indeed if MCL-1
phosphorylation influences MULE binding or whether there is an additional E3 ligase which links MCL-1 phosphorylation and turnover

exception. So, if we want to inhibit one of these pathways in
the hope of tipping the balance in favour of tumour cell death,
which one is more important? Of course, one can determine
this empirically but the individual repertoire of mutations that
each tumour possesses may also be informative.

During its lifetime a tumour cell accumulates dozens of
mutations; some are ‘drivers’ which promote the genesis and
maintenance of the tumour whereas others are simply
‘passengers’ and confer no selective advantage.®® The
concept of ‘oncogene addiction®* posits that tumour cells
remain dependent upon these driver mutations to maintain
their malignant state. Loss of these mutations, or inhibition of
the pathways they control, leads to loss of one or more of the
key acquired traits of the cancer cell’ leading to loss of
tumorigenic potential and/or tumour regression. For example,
deletion of the activated KRAS allele in the HCT116 and DLD-
1 human colorectal cancer cell lines result in clones that are no
longer tumorigenic.®® Despite the fact that these cells have
accumulated additional genetic alterations they remain
dependent upon the activated KRAS allele, which can be
viewed as a foundation of the tumour.

Arising from these observations is an appreciation that
tumour cells evolve to be dependent upon the signal pathways
activated by their driver oncogenes. For example, if a tumour
cell does not have a mutation that activates the ERK1/2
pathway (and so exhibits a low level of ERK1/2 activation) it
will make little use of this pathway to protect it from insults but
will evolve to be dependent upon other pathways that are
activated, such as the PI3K pathway. On the other hand, a
tumour cell with a BRAF mutation (frequently an early event)
will use ERK1/2 signalling to overcome the selection barriers
for survival and will evolve to be dependent upon this pathway.
The degree of dependency on ERK1/2 signalling may be
modulated by coincident mutations in other pathways. So for

Cell Death and Differentiation

example, a tumour cell with a BRAF mutation may be very
dependent upon the ERK1/2 pathway whereas that with a
KRAS or EGFR mutation may be less so, as these
oncoproteins activate multiple effector pathways that may
influence cell survival (Figure 4). Here, we discuss examples
of tumour cells that are addicted to oncoproteins for cell
survival and the contribution that the ERK1/2 pathway makes
in regulating BCL-2 proteins. In principle, inactivation of
ERK1/2 signalling can increase/activate pro-apoptotic
proteins or decrease expression of survival proteins; in
practice, both are observed in tumour cells and drug-induced
death represents a composite of these.

Tumour cells with BRAF®°°E, BRAF mutations are
common in melanoma, thyroid and colorectal cancer® and
cell lines derived from these tumours typically exhibit high
ERK1/2 activity. Such cells lines are frequently addicted to
ERK1/2 signalling; for example, BRAF®E_positive
melanoma cells undergo a G1 arrest and apoptosis when
BRAF expression is silenced or the pathway is inhibited even
when cells are maintained in complete medium.%®
A consequence of this addiction to ERK1/2 signalling is
that inhibition of the pathway frequently sensitizes tumour
cells to insults they are otherwise relatively resistant to. This
is particularly evident in the case of serum withdrawal; for
example, BRAF®%°E_positive melanoma and colorectal
cancer cells appear to be addicted to the ERK1/2 pathway
for growth factor-independent survival as they undergo cell
death when subjected to serum withdrawal combined with
MEK inhibition.®”-°® Inhibition of MEK in invasive melanoma
cells sensitizes them to anoikis®® whereas papillary thyroid
cancer cell lines may or may not undergo apoptosis upon
inhibition of the ERK1/2 pathway.?°¢



Tumour survival signalling by ERK1/2
K Balmanno and SJ Cook

LT T TR TR R R R R T T TR TEET (T T
LR R TR T T TR T T |! !Ill||Il|||Il||III||III|||III||III||III||III||III||III||IIIIIIJIIIIIIIJIIIIJIIIII L T T T T R

@w
v
&
! l

BRAF signals
predominantly via
MEK-ERK1/2

non-ERK1/2 pathways

Cells addicted to
ERK1/2 signalling

RAS signals via ERK1/2 and

Addiction to ERK1/2 offset by
activation of other pathways

......... >

0

-~

. f9%e.
booy
- oee®

EGFR activates an array of
pathways including ERK1/2

Addiction to ERK1/2 offset by
activation of multiple pathways

Figure 4 Oncogene addiction and signal pathway redundancy. BRAF is thought to signal predominantly through the MEK1/2-ERK1/2 pathway (shown in black in left
panel) although there is evidence for MEK-independent signalling by RAF isoforms (represented by ?). Consequently a tumour cell with a BRAF mutation will use ERK1/2
signalling to overcome the selection barriers for survival and will evolve to be dependent upon or addicted to this pathway. The degree of dependency on ERK1/2 signalling
may be modulated by coincident mutations in other pathways. So for example, a tumour cell with a BRAF mutation may be very dependent upon the ERK1/2 pathway whereas
that with a KRAS mutation (middle panel) or an EGFR mutation (right panel) may be less so as these oncoproteins activate other effector pathways that may influence cell
survival by regulating common death effectors such as BIM or BAD or survival proteins such as MCL-1. Consequently, a MEK inhibitor (highlighted with a star) may promote a
significant pro-apoptotic response in cells with a BRAF mutation and may sensitize such cells to other stresses. In contrast, cells with a KRAS of EGFR mutation may use other
pathways to repress BIM and BAD or stabilize MCL-1 and so may be less sensitive to RAF or MEK inhibition

Itis now clear from several studies that BIM is a major target
of ERK1/2-dependent survival signalling in BRAF®°°E-positive
tumour cells. In melanoma cell lines, inhibition of the ERK1/2
pathway with PD184352 (Cl-1040) synergizes with with-
drawal of serum to promote apoptosis; under these conditions
there is a strong increase in BIM expression and RNAi-
mediated knockdown of BIM confers partial protection.®’
Similarly, serum withdrawal and MEK inhibition by U0126 or
AZD6244 gives rise to a strong increase in BIM expression in
BRAF®%°E_positive colorectal cancer cell lines and death
under these conditions is significantly reduced by siRNA-
mediated ablation of BIM.5® Indeed, the clinical candidate
AZD6244 caused a striking increase in BIMg_ expression in
COLO205 cells®® and promoted regression of COLO205
xenografts in vivo.'2 Both of these studies reveal that BIMg,_ is
the major form of BIM that is subject to regulation by MEK
inhibitors and demonstrate that tumour cells with BRAF®°°E
exhibit a strong, constitutive signal for BIMg_ degradation
through the proteasome.”:%8 They also reveal some impor-
tant details: first, inhibition of MEK alone in complete medium
can cause an increase in BIM expression but relatively little

cell death;” second, even complete ablation of BIMby siRNA

affords only 60% protection against death arising from serum
withdrawal and MEK inhibition.>® Both these observations
suggest that either BIM expression must reach a certain
threshold to induce death or that BIM acts in concert with
another BH3-only protein. Indeed, studies have suggested
that ERK1/2 signalling protects melanoma cells from anoikis
by inhibiting both BAD and BIM.®2%3 |nhibition of ERK1/2
signalling increased the abundance of both BIM and BAD and
their combined knockdown strongly inhibited death arising
from BRAF knockdown.®® In a separate study, melanoma cell
lines with high levels of ERK1/2 signalling underwent
apoptosis when treated with U0126 and the increase in BIM
and PUMA and the loss of MCL-1 appeared to play the critical
role in cell death.®*

ERK1/2 signalling can also provide protection against
chemotherapeutic cytotoxic drugs. In BRAFY6%°E_positive
melanoma cells ERK1/2 signalling protects against apoptosis
induced by cisplatin, actinomycin D or daunorubicin.®®
Treatment with UO126 increased BIM expression, decreased
BAD phosphorylation and, surprisingly, reduced NOXA
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expression. Knockdown of either BIM, BAD or NOXA
separately had little effect on apoptosis but triple knockdown
did afford partial protection;®® whether inhibition of ERK1/2
signalling (which activates BIM and BAD) can synergize with
DNA-damaging agents (which work in part through NOXA and
PUMA) and which BOPs are involved in such synergy, was
not addressed. BIM is required for paclitaxel-induced apop-
tosis in baby mouse kidney epithelial cells and activation of the
ERK1/2 pathway by expression of mutant HRAS or mutant
CRAF reduces sensitivity to paclitaxel by promoting BIMg_
phosphorylation and turnover.®® However, it remains to be
seen if the combination of paclitaxel and RAF or MEK
inhibition can synergize to promote cell death in human
tumour cells with BRAF®°°E and whether this is dependent
upon BIM. Regardless, these examples reveal the extent to
which tumour cells with BRAF mutations can evolve to be
dependent upon ERK1/2 signalling for normal survival and
against various drug-induced insults. It also indicates that the
BCL-2 protein family is recruited to initiate death when the
ERK1/2 pathway is inhibited, suggesting that inhibitors of the
ERK1/2 pathway may show promise alone or in combination
with other therapies in tumours with BRAF®°°E

Tumour cells with RAS mutations. In contrast to
BRAF°°E mutant RAS oncoproteins have more options for
survival signalling because they activate multiple effector
pathways (Figure 4). Although the precise role of these
various effectors in RAS-dependent survival signalling and
tumorigenesis is not yet known, it is clear that some, notably
PI3K, are clearly required for RAS-induced tumorigenesis in
mouse models.®” Inhibition of the ERK1/2 pathway is often
associated with a G1 cell cycle arrest in cells with RAS
mutations®® but there are clearly instances in which ERK1/2
inhibition promotes cell death. For example, pancreatic
cancer cells with KRAS mutations may undergo cell cycle
arrest®® or cell death®® upon inhibition of the ERK1/2
pathway. In HCT116 colorectal cancer cells, which harbour
a KRAS mutation, MEK inhibitors promote a G1 cell cycle
arrest followed by a delayed caspase-dependent cell death;
although the precise mechanism is unclear, such treatments
cause a striking increase in BIM expression (K Balmanno
and S Cook, unpublished observations). Indeed, even in
melanoma cell lines with NRAS mutations, MEK inhibition
invariably leads to an increase in BIM expression®® but this is
not always accompanied by cell death indicating that
increased BIM expression alone may not be sufficient for
cell death. Clearly the use of multiple effector pathways
downstream of RAS means that alternative pathways can
substitute for ERK in maintaining cell survival. This situation
is made more complex by the recognition that the same RAS
mutant can activate different pathways to different extents,
even in the same tumour types. Analysis of colorectal cancer
cell lines with the same KRAS alleles has revealed striking
differences in the activation of ERK1/2 or PKB, with some
cell lines exhibiting very low levels of ERK1/2 activity and
others very high”®”" (K Balmanno and S Cook, unpublished
observations). So death arising from MEK inhibition may be
determined by the degree to which RAS mutants couple to
ERK signalling (pathway addiction) and the presence of
mutations on other pathways such as PI3K which offset this.

Cell Death and Differentiation

The activation of multiple effector pathways is exacerbated
still further in the case of oncoproteins such as EGFR or
BCR/ABL (Figure 4).

EGFR in lung cancer. Overexpression of EGFR is seen in
many tumours of epithelial origin, including cancers of the
lung, breast, head and neck and bladder, and is associated
with a poor prognosis. Some non-small cell lung cancer cells
exhibit somatic point mutations in EGFR and are remarkably
sensitive to the EGFR-selective tyrosine kinase inhibitors
(TKIs), gefitinib or erlotinib, which inhibit the otherwise
constitutive activation of the ERK1/2 and PKB pathways.
Treatment of sensitive NSCLC cells with gefitinib™>"® or
erlotinib”7® increased the expression of BIM in all studies
and also reduced the expression of MCL-1.”* The reduction
in MCL-1 might contribute to apoptosis but was not
consistently observed in drug-sensitive cell lines. It is also
likely that other BCL-2 family proteins, such as BAD and
PUMA, may be involved in the induction of apoptosis in
NSCLC by erlotinib.”*5 Erlotinib can also inhibit growth of
lung cancer xenografts in nude mice and this is associated
with increased BIM expression.”* In all these studies
upregulation of BIM was invariably a response to EGFR
inhibition and was required for maximal apoptosis. Finally,
secondary mutations in the EGFR that are seen in relapsing
patients with acquired resistance prevent the increased BIM
expression and cell death in response to gefitinib.”?

These studies reveal the remarkable extent to which certain
NSCLC cells are addicted to signalling by the EGFR and the
importance of BIM and potentially BAD in cell death arising
from EGFR inhibition. What is less clear is the role of loss of
ERK1/2 signalling in the erlotinib- or gefitinib-induced death.
Even though MEK inhibitors and erlotinib or gefitinib induced
comparable levels of BIM expression and BIMg_ dephos-
phorylation, inhibition of the ERK1/2 pathway alone did not
induce significant levels of apoptosis in TKI-sensitive NSCLC
cells.” Indeed, a study using gefitinib-resistant NSCLC cells
has previously suggested that complete inhibition of both the
ERK1/2 and PI3K pathways is required to induce apoptosis in
these cells.”® Thus, the ERK1/2 pathway forms part of a cell
survival signalling network downstream of EGFR in NSCLC,
but its inhibition alone may not be sufficient for cell death.
Similarly, this implies that the expression and de-phosphory-
lation of BIMg_ arising from MEK inhibition may not be
sufficient for cell death in these cells. Indeed, enhanced
NSCLC cell killing is observed when targeted TKls are
combined with BH3 mimetic therapeutics such as ABT-
7377 suggesting that multiple pro-survival proteins need to
be inhibited for optimal therapeutic cell killing or the increase
in BIM expression does not reach a sufficient threshold for cell
death.

BCR/ABL in chronic myelogenous leukaemia. In chronic
myelogenous leukaemia the BCR/ABL oncoprotein activates
a number of signalling cascades including the RAS-RAF-
MEK-ERK1/2 pathway, the PI3K pathway, STAT5 and
NF-xB.”” Activation of these pathways leads to growth
factor-independent growth and survival, which can be
overcome by targeted TKI therapies against the BCR/ABL
tyrosine kinase such as imatinib and dasatinib. BCR/ABL



signalling increases the expression of BCL-X,, MCL-1 and
BCL-2, which may have a role in protecting chronic
myelogenous leukaemia (CML) cells from apoptosis.”®®'
Certainly imatinib treatment causes a striking loss of MCL-1
in CML cells and knockdown of MCL-1 reduces cell
viability.®% There is also a prominent role for BIM in death
arising from BCR/ABL inhibition. Expression of BIM is
repressed in blast cells from mouse models of CML and
from patients.®"®2 Treatment of these cells with imatinib
increased BIM expression and cells died in a BIM-dependent
fashion.®'82 In BCR/ABL-positive K562 cells BIM knockdown
did not provide complete protection against imatinib-induced
apoptosis but knockdown of BIM and BAD together almost
completely  protected BCR/ABL-transformed  murine
progenitor cells from imatinib-induced apoptosis suggesting
that BAD and BIM play a role in TKl-induced apoptosis in
CML.®% Furthermore, the BH3 mimetic ABT-737 could
enhance cell killing induced by imatinib and could even
overcome resistance associated with loss of BIM and BAD.%3

In haematopoietic progenitor cells IL-3 represses BIM
expression primarily through the ERK1/2 pathway but also
requires additional signals for cell survival.®* The same seems
to apply for BCR/ABL as treatment of BCR/ABL-transformed
Ba/F3 cells with MEK inhibitors induced BIM expression to the
same degree as that observed with imatinib, whereas PI3K
inhibition had little effect.®? In addition, both imatinib and MEK
inhibitors induce a similar loss of MCL-1 in CML cells.®°
Despite this, as with EGFR in NSCLC, inhibition of ERK1/2
signalling alone with PD184352 caused little cell death in
BCR/ABL-positive leukaemic cells®® indicating that BCR/ABL
uses multiple pathways to ensure cell survival. The combina-
tion of the dual Src/Abl inhibitor dasatinib and PD184352 gave
a marked enhancement of apoptosis compared with either
drug given alone, including in an imatinib-resistant clone of
K562 cells; death under these conditions appears to be due to
expression of BIM and the loss of MCL-1.8% These results
highlight the importance of coordinated changes in expression
and activity of BCL-2 proteins in the cytotoxic response to
TKIs and the potential of augmenting this by co-administration
of inhibitors of the ERK1/2 pathway or BH3 mimetics.

Conclusions

The last 5-6 years has seen the discovery of a variety of new
mechanisms by which the ERK1/2 pathway can regulate
BCL-2 proteins to promote cell survival and a growing
appreciation of the extent to which these mechanisms are
co-opted by oncoproteins in tumour cells. In many cases both
the ERK1/2 and PI3K-PKB pathways regulate a common set
of cell death regulators (BIM, BAD, BMF, MCL-1, BCL-x_,
BCL-2) indicating a significant degree of redundancy in
survival signalling. Such a redundancy should come as no
surprise but represents a challenge when seeking to inhibit
selected pathways for therapeutic effect in cancer. The
importance of ERK1/2 in survival signalling in cancer will be
determined by the remodelling of survival signalling in cancer
cells; this will differ for different oncogenes so the context is
key. For example, cancers with BRAF mutations may evolve
to be addicted to the ERK1/2 pathway so RAF or MEK
inhibition may represent a potential therapeutic strategy. In
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tumours with RAS or tyrosine kinase mutations, ERK1/2 may
be just one arm of a broad survival signalling network
(Figure 4). In such cases RAF or MEK inhibition alone may
have limited efficacy but may be more effective when
combined with TKIs, PISK or PKB inhibitors. Indeed, there
are clear examples in which inhibition of ERK1/2 signalling
can cooperate with targeted TKIs to de-regulate BCL-2
proteins and promote tumour cell death. In instances where
RAF or MEK inhibitors do induce tumour cell death there is
good evidence to suggest that this proceeds through the BCL-
2 proteins. In this context, studies on the combination of RAF
or MEK inhibitors with BH3 mimetics such as ABT-737 in
tumours and tumour cell lines with high levels of ERK1/2
activity are perhaps overdue. Finally, although inhibitors of
BRAF or MEK catalytic activity may hold promise, it is worth
remembering that CRAF can provide survival signals that do
not depend on its catalytic activity®® and these may be co-
opted by RAS or certain tumour-derived BRAF mutants with
reduced kinase activity.8” Understanding potential MEK-
independent effects of BRAF or CRAF signalling may prove
to be very important.

Although this review has focused on the regulation of BCL-2
proteins it is clear that ERK1/2 signalling can also promote cell
survival by other mechanisms. For example, ERK1/2
activation can inhibit apoptotic signalling by Fas, TNF, and
TRAIL receptors®® suggesting that ERK1/2 inhibition might be
effective in combination with recombinant ligands or agonistic
mAbs for these receptors in tumours with de-regulated
ERK1/2 signalling. What is clear is that the ERK1/2 pathway
is no longer ‘second fiddle’ in survival signalling; rather, itis an
important component of cell survival signalling networks and
in certain tumour types may ‘lead the orchestra’.
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