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Background: Malignant pleural mesothelioma (MPM) is an aggressive tumour originating in the thoracic mesothelium. Prognosis
remains poor with 9- to 12-month median survival, and new targets for treatments are desperately needed.

Methods: Utilising an RNA interference (RNAi)-based screen of 40 genes overexpressed in tumours, including genes involved in
the control of cell cycle, DNA replication and repair, we investigated potential therapeutic targets for MPM. Following in vitro
characterisation of the effects of target silencing on MPM cells, candidates were assessed in tumour samples from 154 patients.

Results: Gene knockdown in MPM cell lines identified growth inhibition following knockdown of NDC80, CDK1 and PLK1. Target
knockdown induced cell-cycle arrest and increased apoptosis. Using small-molecule inhibitors specific for these three proteins
also led to growth inhibition of MPM cell lines, and Roscovitine (inhibitor of CDK1) sensitised cells to cisplatin. Protein expression
was also measured in tumour samples, with markedly variable levels of CDK1 and PLK1 noted. PLK1 expression in over 10% of cells
correlated significantly with a poor prognosis.

Conclusion: These results suggest that RNAi-based screening has utility in identifying new targets for MPM, and that inhibition of
NDC80, CDK1 and PLK1 may hold promise for treatment of this disease.

Malignant pleural mesothelioma (MPM) is a malignant tumour of
the serosal membrane lining the thoracic cavity that remains very
difficult to treat and is almost invariably fatal. Elicited by
inhalation of asbestos fibres, the disease usually appears after a
latency of several decades following first exposure (Lanphear and
Buncher, 1992). Despite a ban on the use of asbestos in many
developed countries, the incidence of MPM continues to rise, and
predictions are that it will continue to do so until the middle of this
century, largely due to the continued presence of asbestos in
buildings (Linton et al, 2012).

The treatment options for MPM include surgery, radiotherapy
and chemotherapy, with the actual therapy chosen dependent on

factors such as performance status, extent of disease and tumour
histopathology. Chemotherapy is the treatment of choice in
unresectable disease, but single-agent treatment response rates
are no more than 20%. Even the currently used first-line
therapeutic regimen of pemetrexed with cisplatin achieves a
response in only 40% of patients, and provides an increase in
median survival from 9 to 12 months (Vogelzang et al, 2003). New
therapeutic targets are urgently needed, necessitating a better
understanding of MPM biology.

A number of reports of gene expression profiling in MPM have
been published, but the results have been variable with little
overlap in the genes identified (Singhal et al, 2003; Pass et al, 2004;
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Lopez-Rios et al, 2006; Romagnoli et al, 2009). The studies have
also varied in their aims, with prognostic and predictive markers
targeted in several cases. Nevertheless, some investigators have
attempted to identify potential therapeutic targets (Singhal et al,
2003; Romagnoli et al, 2009); identified genes were involved in
glucose metabolism (Singhal et al, 2003), cytoskeleton remodelling
(Singhal et al, 2003), cell cycle (Pass et al, 2004; Lopez-Rios et al,
2006; Romagnoli et al, 2009) and signalling (Pass et al, 2004;
Lopez-Rios et al, 2006). Most recently, an extensive survey of the
differences between gene expression in parietal and visceral pleural
membranes and MPM was reported. The authors identified a
number of overexpressed genes which they postulated may
represent potential therapeutic targets. These genes included those
involved in DNA replication and repair and control of the cell
cycle (Roe et al, 2010). Many are also implicated in the intrinsic
chemoresistance of MPM tumours. Similarly, a report focusing
specifically on the expression of cell-cycle genes found a number of
these to be overexpressed in MPM tumours and cell lines
compared with controls (Romagnoli et al, 2009).

With the advent of RNA interference (RNAi) as a molecular
tool, the suitability of specifically overexpressed genes as
therapeutic targets can be rapidly assessed. However, this
technique has only been used to investigate a few cases of MPM.
CHEK1 was identified as overexpressed in MPM, and silencing its
expression in MPM lines led to increased apoptosis and
sensitisation to doxorubicin (Romagnoli et al, 2009). With the
aim of identifying further genes that may serve as therapeutic
targets in MPM, we have combined the results from previous gene
expression studies with a rational RNAi-based screen to assess the
effects of gene silencing on MPM cell growth. Silencing 40 genes
involved in cell cycle and DNA replication and repair and
previously reported to be overexpressed in MPM (Singhal et al,
2003; Pass et al, 2004; Lopez-Rios et al, 2006; Romagnoli et al,
2009), we identified NDC80, CDK1 and PLK1 as potential
therapeutic targets for MPM.

MATERIALS AND METHODS

Chemicals and reagents. Chemicals and reagents, including
RNase and propidium iodide (PI), were purchased from Sigma-
Aldrich (Sigma, St Louis, MO, USA). SYBR Green I and TRIzol
were purchased from Life Technologies (Carlsbad, CA, USA).
The CDK1 inhibitor Roscovitine, PLK1 inhibitor BI 2536, and
the CHEK1 inhibitor AZD7726 were purchased from Selleck
(Houston, TX, USA). The NDC80 inhibitor, INH1, was from
Tocris Bioscience (Minneapolis, MN, USA). Cisplatin was
purchased from McFarlane Medical and Scientific (Sydney, Australia)
and Gemcitabine was from Eli Lilly (Sydney, Australia).

Cell culture. The human MPM cell lines H28, H226, H2452 and
MSTO-211H, and the transformed human mesothelial cell line
MeT-5A, were purchased from the American Type Culture
Collection (ATCC, Manassas, VA, USA). MM05 cells were
provided by Kwun Fong and Raylene Bowman, The Prince
Charles Hospital, Australia (Relan et al, 2013). Cell lines were
maintained in RPMI medium supplemented with 10% heat-
inactivated fetal calf serum (FCS) except MeT-5A cells which were
cultured in DMEM supplemented with 10% FCS. Media and FCS
were from Life Technologies.

siRNAs and transfection. All siRNAs and transfection reagents
were purchased from Life Technologies. Two independent siRNAs
specific for each target gene were used and sequences are listed in
Supplementary Table 1. Lipofectamine RNAiMax (LRM) was used
to introduce siRNAs into cells via reverse transfection. An LRM
concentration of 0.8ml ml� 1 was used for transfections in all cell
lines. Lipoplexes were transferred to multi-well tissue culture plates

and overlaid with 5� 103 cells per cm2 for ATCC lines and
10� 103 cells per cm2 for the MM05 line. Following overnight
incubation, the transfection medium was replaced.

Real-time PCR. Total RNA was isolated with TRIzol, and the
concentration and purity were determined using a NanoPhotometer
(Implen, Munich, Germany). Reverse transcription was
performed with 100 ng total RNA using the AffinityScript qPCR
cDNA Synthesis Kit and oligo(dT) primers according to the
manufacturer’s instructions (Stratagene, Agilent Technologies,
Santa Clara, CA, USA). Reactions were incubated in a PCR
Thermocycler (Labnet International, Edison, NJ, USA) at 42 1C for
5min, 55 1C for 15min and 95 1C for 5min. The resulting cDNA
(10 ng) was amplified using 180 nM primers (Supplementary
Table 1) and SYBR Green qPCR Master Mix (Stratagene). Real-
time qPCR was performed on a Stratagene Mx3000P (Agilent
Technologies). The cycling protocol consisted of an initial 10min
denaturation step at 95 1C followed by 40 cycles of denaturation at
95 1C for 15 s and annealing/extension at 55 1C for 60 s. mRNA
expression levels were determined using the 2�DDCq method
(Livak and Schmittgen, 2001) with normalisation to GAPDH and
expression calculated relative to the corresponding control-
transfected cells.

Growth assays. To measure the effects on cell growth of siRNA-
mediated target gene knockdown or target-specific small-molecular
inhibitors, an SYBR Green I-based fluorometric assay was used.
Briefly, at the indicated time points following transfection or drug
addition, plates were frozen at � 80 1C. At the completion of the
assay, plates were thawed and 200ml cell lysis buffer (10mM Tris
HCl pH 8.0 containing 2.5mM EDTA, 1% Triton X-100) containing
SYBR Green I (1 : 4000 v/v) were added to the wells. After overnight
incubation in the dark at 4 1C, cell lysates were mixed thoroughly,
and DNA fluorescence was measured with a FluoStar Optima plate
reader (BMG Labtech, Ortenberg, Germany) set at an excitation
frequency of 485 nm and measuring emission at 535nm.

Colony formation assays. Cells (2500 cells per well) were
transfected with 1 nM siRNA in 96-well plates. After 24 h, cells
were re-plated in 6-well plates and incubated for a further 10–14
days. Alternatively, cells were plated at low density in 6-well plates
and 24 h later treated with target-specific small-molecule inhibitors.
Following 10–14 day incubation, medium was removed and cells
fixed in 70% ethanol, then stained in 10% ethanol solution
containing 0.1% crystal violet for 1 h. Following destaining,
colonies were counted.

Annexin V and PI apoptosis and cell-cycle analysis. To assess
apoptosis, cells were transfected with 5 nM siRNA specific for
CDK1, NDC80, PLK1 (two siRNAs per target gene) or control in
6-well plates at a density of 3� 105 cells per well in RPMI
containing 10% FCS. After incubation for 48 h, cells were harvested
and washed three times with phosphate-buffered saline (PBS).
Cells were either fixed with 70% ethanol for cell-cycle analysis or
stained with the FITC Annexin V Apoptosis Detection Kit (Life
Technologies) for Tali image-based apoptosis assay (Life Technologies).
For detection of apoptosis, cells were incubated with Annexin V
and PI for 20min at room temperature in the dark. Annexin V and
PI stained live cells were then loaded on a Tali Cellular Analysis
Slide for Tali image-based apoptosis analysis. Cells stained with
Annexin and/or PI were counted and each experiment was
performed in triplicate.

For cell-cycle analysis, fixing solution was removed and cells
were treated with 0.01% RNase (10mgml� 1, Sigma), 0.05% PI in
PBS for 30min at 37 1C in the dark. The cell-cycle distribution was
determined on an Accuri C6 flow cytometer (BD Biosciences,
Franklin Lakes, NJ, USA) within 30min. The flow cytometer was
calibrated using 6- and 8-peak fluorescent bead mixtures provided
by the manufacturer, and according to their instructions (Accuri,
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Ann Arbor, MI, USA). The flow cytometer was routinely operated
at the Slow Flow Rate setting (14 ml sample per minute), and data
acquisition for a single sample typically occupied 3–5min. For each
sample, 10 000 events were counted and cell cycle was analysed
using the FlowJo software (Ashland, OR, USA). Each experiment
was performed in triplicate.

Western blot anlaysis. To assess protein expression, cells were
transfected with 5 nM siRNA specific for CDK1, NDC80, PLK1
(two siRNAs per target gene) or control (C81) in 6-well plates at a
density of 2� 105 cells per well. After incubation for 48 h, cells
were harvested for protein isolation. For western blot analysis, cell
lysates were prepared with RIPA buffer (Pierce, Rockford, IL, USA)
plus Complete protease inhibitors (Roche Diagnostics, Mannheim,
Germany) according to the manufacturers’ instructions. Protein
concentration was determined by BCA assay (Pierce) and cell
lysates (20 mg per lane) were separated on SDS–PAGE under
reducing conditions before transfer onto nitrocellulose membrane
using the Trans-Blot Turbo Transfer System (Bio-Rad, Hercules,
CA, USA) and immunoblotted using anitbodies specific for PLK1
(Anti-PLK1-clone-35-206, 1 : 1000; Millipore, Billerica, MA, USA),
NDC80 (ab3613, 1 : 1000; Abcam, Cambridge, MA, USA) and
CDK1 (Anti-CDC2-9112; 1 : 1000; Cell Signalling, Boston, MA,
USA). Immunoreactive proteins were detected using anti-mouse
(for PLK1 and NDC80) and anti-rabbit (CDK1) horseradish
peroxidase-conjugated secondary antibody and SuperSignal West
Femto (all from Pierce). The membranes were stripped with
Restore Western Blot Stripping Buffer (Pierce) and immunoblotted
with a mouse monoclonal antibody against b-actin (Sigma,
1 : 1000). Imaging was carried out using a Gel Logic 2200 Imaging
System (Kodak, Rochester, NY, USA) under non-saturating
conditions.

Patients and samples. Our retrospective cohort consisted of 154
consecutive patients, either with a confirmed pathological
diagnosis of MPM who underwent extrapleural pneumonectomy
(EPP) from 1994 to 2009 at Royal Prince Alfred and Strathfield
Private Hospitals (Sydney, Australia) (Kao et al, 2011a, 2013) or
pleurectomy and/or decortication (P/D) for whom pathological
tissue was available between October 1991 and 2009 at Royal
Prince Alfred Hospital. The details of the patients were kept in a
prospectively collected database with additional demographic and
survival data identified from hospital records. The histologic
diagnosis and subtypes of MPM were determined in accordance
with the World Health Organisation criteria. The study was
approved by the Human Research Ethics Committees at the
Sydney South West Area Health Service (Concord Repatriation
General Hospital Zone) and the Human Research Ethics
Committees of Flinders Medical Centre. Informed consent from
all participants was obtained.

Tissue microarray construction. Haematoxylin and eosin slides
from formalin-fixed paraffin-embedded (FFPE) tissue blocks were
reviewed. Areas containing tumour were marked on the slides, and
the corresponding areas then marked on the FFPE blocks. Utilising
previously validated methods (Kao et al, 2011b), the Advanced
Tissue Arrayer, ATA-100 (Millipore) was used to construct tissue
microarrays (TMAs) consisting of a minimum of four cores of
1mm from the donor blocks inserted into a recipient block.
The recipient blocks were arranged in a systematic manner and
4-mm sections of the TMAs were cut and applied to slides for later use.

Immunohistochemistry. Tissue microarray slides were deparaffi-
nised and rehydrated before quenching with 10% H2O2. The
sections were incubated with anti-PLK1 (1 : 1200; Millipore) or
anti-CDC2 (CDK1) mouse monoclonal antibody (Anti-CDC2-
9116, 1 : 50; Cell Signalling). Positive controls were used during
optimisation and final testing in accordance with the manufac-
turer’s instructions (T-cell lymphoma [PLK1]/benign lymphoid

tonsillar hyperplasia [CDC2]). The sections were detected with
the NovoLink Polymer complex reagent (Leica Microsystems,
Bannockburn, IL, USA). Immunolabelling was visualised with
DABþ Substrate Chromogen System (Dako, VIC, Australia),
followed by haematoxylin counter-staining. For quantitative
evaluation, the percentage of labelled cells (from 0% to 100%),
irrespective of intensity, was assessed by a qualified anatomical
pathologist (SK). The investigator was not aware of the survival
data when scoring was assessed. An average was calculated from
assessable cores with note taken of the site of the labelling.

Statistical analysis. Data were analysed using an unpaired t-test or
repeated measures ANOVA followed by Fisher’s protected least
significant difference test using Statview 4.02 (Abacus Concepts,
Inc., Berkeley, CA, USA). A P-value of o0.05 was considered as
statistically significant. Overall survival (OS) was calculated from
the date of diagnosis to the date of death or last follow-up, and was
the primary end point of this study. Patients were censored at last
follow-up if still alive or lost to follow-up. Univariate Cox models
were evaluated for age, sex, histologic subtype, PLK1 and CDK1
score, and hazard ratios calculated. PLK1 and CDK1 expression
was assessed both as variable level (at increments of 10%
expression) and as categorical variable (using a cutoff value).
In a preliminary assessment of PLK1 and CDK1 labelling, we
found a median score of 3% and 16%, respectively. For scoring to
be both practical and clinically robust, scores of o10% and X10%
for PLK1 and o20% and X20% for CDK1 were chosen. Variables
with a P-value of o0.05 were considered as statistically significant
and were examined by Kaplan–Meier curves. The univariate
variables were then entered into a multivariate Cox model
including age, sex and histologic subtype, as they are generally
accepted prognostic factors. These analyses were performed using
SPSS for Windows version 19.0 (SPSS, Inc., Chicago, IL, USA).

RESULTS

A rational RNAi-based screen identifies potential targets in
MPM. On the basis of the results from previous gene expression
profiling studies (Romagnoli et al, 2009; Roe et al, 2010) in MPM,
we selected 40 targets for RNAi-mediated knockdown and
designed 2 siRNAs per target gene (Supplementary Table 1). In
the initial screen, all 40 targets were individually silenced by 2
independent siRNAs in the MPM lines H28 and MSTO-211H
(Figure 1A). Targets for which both siRNAs resulted in greater
than 50% (black boxes represent 450%) growth inhibition were
BIRC5, CDK1, CHEK1, NDC80, PLK1, RRM1 and RRM2
(Figure 1A). The mRNA expression of each target following
transfection was assessed in H28 cells to determine the efficacy of
the siRNAs (Figure 1A). In general, similar results were obtained
from each of the two siRNAs specific for independent sites in the
target message.

As small-molecule inhibitors have been developed for CDK1,
NDC80 and PLK1 and they have not previously been linked to
MPM, these targets were considered further. Silencing of each gene
resulted in time- and dose-dependent growth inhibition for 5 days
post transfection (Figure 1B) and this correlated with reductions in
mRNA and protein (Figure 1A and D, respectively). Silencing
CDK1 (1 nM) decreased cell growth by 20% (MM05) to 80%
(MSTO-211H) 5 days post transfection. Similarly for NDC80
knockdown this was between 25% (MM05) and 80% (MSTO-
211H) and for PLK1 between 48% (MM05, H28 and H2452) and
80% (MSTO-211H). In addition, silencing CDK1, NDC80 and
PLK1 resulted in reduced clonogenic survival in colony formation
assays when compared with control siRNA-transfected cells
(Figure 1C). All growth inhibitory effects following siRNA
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Figure 1. Rational RNAi screen identifies new targets in MPM. (A) Based on the previous reports, 40 genes were selected for knockdown
screening. Growth inhibition was measured in four MPM cell lines. Black boxes represent 450% inhibition with two independent siRNAs for
specified target. mRNA expression following siRNA transfection was measured for each siRNA in H28 cells—black represents 475% knockdown
for both siRNA; grey is475% for one siRNA only. (B) Cells were transfected with 0.2 nM (~), 1 nM (m) and 5nM (’) siRNA targeting CDK1, PLK1 or
NDC80. Cells were harvested at the indicated times and the effect on cell growth measured. Data were compared with cells transfected with a
control non-silencing siRNA [C81] (J). Values are expressed as mean±s.d. (C) Cells were transfected with 1 nM siRNA in 96-well plates, and 24h
later were transferred to 6-well plates. After incubation for a further 10–14 days, cell was fixed and stained with crystal violet. (D) Protein levels in
MSTO-211H and H28 cells treated with 1 nM siRNA were determined by western immunoblotting. Representative pictures are shown. b-Actin
acted as a loading control. Similar results were obtained from all other cell lines (data not shown).
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transfection correlated with a strong and specific reduction in
target protein expression (Figure 1D).

Analysis of cell cycle following knockdown revealed an increase
in the percentage of cells in G2/M phase in both H28 and MSTO-
211H cell lines with an accompanying decrease in the proportion
of cells in G0/G1 (Figure 2A). Cells transfected with siRNA specific
for CDK1 or PLK1 showed a two-fold increase in the G2/M
population. The sub-G1 phase increased following knockdown of
all three targets, although the effect was more pronounced in
MSTO-211H cells. Similar results were observed with MM05 cells
(not shown). To determine whether mitotic arrest led to the
induction of apoptosis, H28 and MSTO-211H cells were analysed
for annexin V/PI binding following targeted silencing of CDK1,
NDC80 and PLK1 (Figure 2B). Image-based cytometric analysis
with Annexin V and PI staining showed an increase in the
percentage of H28 and MSTO-211H cells undergoing early
apoptosis following decreased expression of CDK1, NDC80 and
PLK1 (Figure 2B). Induction of apoptosis was also evidenced by an
increase in DNA fragmentation following CDK1, NDC80 and
PLK1 silencing (Supplementary Figure 2).

Inhibitors of CDK1, NDC80 and PLK1 reduce the growth of
MPM cells. Given the growth inhibitory effects of silencing the
three candidate genes in MPM cells, we next tested small-molecule
inhibitors of CDK1 (roscovitine), NDC80 (INH1) and PLK1

(BI 2536) in a panel of MPM cell lines. Treatment with the CDK1
inhibitor roscovitine and the NDC80 inhibitor INH1 inhibited the
growth of all MPM cell lines with half-maximal inhibitory
concentration (IC50) ranging from 30 to 60 mM and 25 to 90 mM,
respectively. The small-molecule inhibitor of PLK1, BI 2536, was
also cytotoxic in MPM cells, with IC50 values in the low nM range
(Figure 3A). The three drugs also inhibited colony formation of
MPM cells (data not shown).

Sensitising effects of roscovitine and INH1 on cisplatin toxicity
in MPM cells. To test whether inhibition of PLK1, CDK1 or
NDC80 was able to sensitise cells to clinically used drugs, H226
and MSTO-211H cells were treated simultaneously with cisplatin
in combination with BI 2536, roscovitine or INH1. Roscovitine
(33 mM) increased the cisplatin sensitivity of MSTO-211H cells by
3.3-fold, and H226 cells by 2.5- to 4-fold (Figure 3B). We observed
a modest two-fold sensitisation when MSTO-211H cells were
treated with cisplatin in the presence of INH1 (12.2 mM), but there
was no effect of INH1 on the sensitivity of H226 cells to cisplatin
(Figure 3B). BI 2536 had no effect on cisplatin toxicity in either
MPM line (data not shown). Furthermore, neither roscovitine,
INH1 nor BI 2536 was able to influence gemcitabine toxicity
in MPM cell lines (data not shown). In contrast, the CHEK1
inhibitor AZD 7726 (20 mM) sensitised both lines by B2-fold
(Supplementary Figure 1).
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PLK1 and CDK1 are expressed in tumour samples with PLK1
representing an independent prognostic marker in MPM.
To determine the clinical relevance of the targets identified in the
RNAi screen, we assessed expression in two patient series. The first
series consisted of 80 patients who underwent EPP between 1994
and 2004, with the second comprising 74 patients who underwent
P/D between 1991 and 2009 (Supplementary Table 2 summarises
the baseline characteristics for the combined cohorts). The median
OS was 14.2 months, with 90% of patients deceased at the time of
analysis (n¼ 138). The expression of candidates for which
antibodies were available was assessed in the TMAs. Immunohisto-
chemistry (IHC) demonstrated nuclear staining of PLK1, while
nuclear and cytoplasmic staining was noted for CDK1 (Figure 4A).
The median PLK1 expression averaged across assessable cores was
3.05% (range 0–42.5%; 12% of patients PLK1 expression over 10%)
and median CDK1 expression was 16.0% (range 0.5–96%). Upon
assessment of OS, a statistically significant reduction was noted at
PLK1 expression of 410% (15.5 vs 5.0 months; P¼ 0.004, see
Figure 4B and Table 1). In contrast, the expression of CDK1 did
not correlate with survival. Younger age, epithelioid histological
subtype and female gender conferred a significant survival advantage.

Univariate analysis, using PLK1 as a continuous variable
and a categorical variable at a cutoff value of 10%, revealed a
statistically significant decline in prognosis at higher PLK1
expression (Table 2A). CDK1 did not demonstrate a significant
prognostic value. Upon multivariate analysis, including known
prognostic factors, PLK1 expression remained a statistically
significant biomarker (Table 2B).

DISCUSSION

Despite a modest improvement in survival observed after the
introduction of pemetrexed/cisplatin for systemic treatment, the
prognosis of MPM patients has remained poor. Alternatives for
the treatment of MPM patients are clearly needed, and in this
study we have used an RNAi-based approach to identify novel
therapeutic targets. We used previously published data (Singhal
et al, 2003; Pass et al, 2004; Lopez-Rios et al, 2006; Romagnoli
et al, 2009; Roe et al, 2010; Relan et al, 2013) to select 40 genes
overexpressed in MPM, and found that knockdown of BIRC5,
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CDK1, CHEK1, NDC80, PLK1, RRM1 and RRM2 led to growth
inhibition in a panel of MPM cell lines, in line with the well-
characterised roles of these genes in cancer biology. Nevertheless,
an involvement in MPM cell growth and survival has previously
been demonstrated only for PLK1 (Kawata et al, 2011).
Interestingly, a number of genes previously reported to inhibit
growth when silenced in other cancers—CCNB1 (Androic et al,
2008), PSMD14 (Byrne et al, 2010) and RAD18 (Wong et al,
2012)—had no effect on proliferation when silenced in the MPM
cell lines in our study. Taken together, these observations support
the use of RNAi-based screens to identify molecular targets
in MPM.

In further characterisation of candidate therapeutic targets we
focused on PLK1, CDK1 and NDC80/HEC1, as small-molecule
inhibitors for these proteins have been developed. PLK1, a serine/

threonine kinase expressed predominantly in the late G2 and M
phases of cell division, is responsible for the separation and
maturation of the centrosome with a key role in regulating mitotic
entry and exit (Lane and Nigg, 1996; Nigg, 1998). Overexpression
of PLK1 has been associated with poor prognosis in NSCLC (Wolf
et al, 1997), colorectal carcinoma (Han et al, 2012), breast
carcinoma (King et al, 2012) and melanoma (Kneisel et al,
2002). Our findings suggest that the prognostic value of PLK1
expression extends also to MPM. Only a small proportion of
patients demonstrated positive tumour staining for PLK1 with a
median expression of 3% in our cohort. This is comparable to IHC
data in breast cancer patients, where 11% demonstrated positive
staining for PLK1 (King et al, 2012). In both tumour types, lower
or nil PLK1 expression was associated with a significant and
independent survival advantage.

The PLK1 inhibitor BI 2536 has been investigated in preclinical
and clinical models, with in vitro activity in melanoma (de Oliveira
et al, 2012), medulloblastoma (Harris et al, 2012) and breast cancer
(Hu et al, 2012), consistent with our findings in MPM. As a result,
BI 2536 has been assessed alone or in combination with other
drugs in a number of phase I (Ellis et al, 2013) (Hofheinz et al,
2010; Frost et al, 2012) or single-agent phase II (Pandha et al, 2008;
Sebastian et al, 2010) studies, with the predominant finding being
disease stabilisation in 30–50% of patients. While PLK1 may serve
as a biomarker to monitor treatment efficacy of small-molecule
inhibitors such as BI 2536, it is uncertain whether the degree of
overexpression offers predictive value in patients. Given the clear
presence of a small but prognostically significant subset of MPM
patients with markedly elevated levels of PLK1 expression within
their tumours, it may prove worthwhile to assess the predictive role
of baseline tumour expression in future studies of such inhibitors.
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Table 1. Median survival according to known prognostic factors, PLK1
and CDK1 expression

Age o60 years vs X60
years

18.2 vs 9.6
months

P¼ 0.001

Histological
subtype

Epithelioid vs
non-epithelioid

18.7 vs 7.7
months

Po0.001

Gender Male vs female 11.5 vs 21.9
months

P¼0.007

PLK1
expression

o10% vs X10% 15.5 vs 5.0
months

P¼0.004

CDK1
expression

o20% vs X20% 15.7 vs 11.5
months

P¼0.388
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CDK1 (also known at Cell Division Control 2 [CDC2]) is a
serine/threonine kinase that interacts with cyclin B1 to form an
active heterodimer, driving progression from G2-M phase, and
assisting in the regulation of mitosis (Castedo et al, 2002). CDK1
also has a clear influence upon apoptosis, with uncontrolled
activation resulting in premature mitosis (and subsequent cell
death), while also stimulating apoptotic pathways via the Bcl-2
proteins. Overexpression of CDK1 has been associated with more
aggressive disease, tumour infiltration and shorter survival in
breast carcinoma (Chae et al, 2011), colon cancer (Meyer et al,
2009), hepatocellular carcinomas (Ito et al, 2000) and mantle cell
lymphoma (Hui et al, 2005). Although expression of CDK1 was
found in the majority of our MPM samples, it had no prognostic
value. This may reflect the complexity of CDK1 function and its
interplay with other cell-dependent kinases and cell-cycle regula-
tory proteins, thus limiting the prognostic value of determining the
expression level of a single CDK. This was demonstrated in an
analysis of 284 patients with breast cancer: high CDK1-specific
activity was associated with a significant reduction in relapse-free
survival (Kim et al, 2008), but combination with CDK2-specific
activity (ratio CDK2/CDK1) led to greater prognostic accuracy.

Roscovitine, a small-molecule inhibitor of several CDKs
including CDK1/cyclin B, has inhibited tumour proliferation and
promoted apoptosis both alone and in combination with other
drugs in pre-clinical models (Mgbonyebi et al, 1998; Abaza et al,
2008; Appleyard et al, 2009). In phase I studies, roscovitine has
been associated with modest efficacy. Of 56 patients with solid
organ malignancies treated with roscovitine, 1 had partial response
with 6 others achieving stable disease lasting for over 4 months (Le
Tourneau et al, 2010). Phase II studies of roscovitine by Cyclacel
have been carried out in NSCLC patients but have yet to be
published.

The NDC80 complex connects chromosomal centromeres to
mitotic spindle microtubules and consists of a rod-like assembly of
four proteins, HEC1, Nuf20, SPC24P and SPC25. HEC1 in
particular has a role in a number of processes including a mitotic
control for kinetochore assembly, chromatic segregation, spindle
organisation and biogenesis, and cell division. NDC80 mRNA levels
were significantly increased in benign breast tumours in comparison
with normal breast tissue, suggesting that NDC80 mRNA levels
could serve as a marker of lesions that may be likely to undergo
malignant transformation (Bieche et al, 2011). This finding is
reinforced in mouse models where HEC1 overexpression was
associated with a significant increase in lung adenomas and hepatic
tumours (Diaz-Rodriguez et al, 2008). Our attempts to characterise
the expression of NDC80/HEC1 in MPM tumour samples proved
difficult due to the lack of NDC80 antibodies for IHC.

Inhibition of HEC1 via RNAi was associated with a reduction in
xenograft tumour growth (Gurzov and Izquierdo, 2006; Li et al,
2007) prompting the investigation of INH1, a small-molecule
inhibitor. INH1 has been demonstrated to disrupt the HEC1/NEK2
interaction, leading to a reduction in tumour proliferation in breast
cancer, cervical adenocarcinoma and colon carcinoma cell lines.
Furthermore, this compound also inhibited growth of breast cancer
xenografts (Wu et al, 2008). As with PLK1 and CDK1, on the basis
of our results following knockdown for NDC80 and use of INH1,
we recommend further investigation on the role of this agent
in MPM.

In addition to their involvement in proliferation, a role for PLK1
and CDK1 in chemotherapy resistance has been suggested.
In breast cancer, targeting PLK1 with antisense oligonucleotides
gave synergistic effects in combination with paclitaxel in cell
lines and xenograft models (Spankuch et al, 2006), whereas
squamous cell carcinoma cells transfected with PLK1-specific
siRNA had enhanced sensitivity to cisplatin (Tyagi et al, 2010).
Similarly, ectopic expression of miR-100 (a regulator of PLK1)
and PLK1 knockdown were each associated with resensitisation of
lung adenocarcinoma cells previously resistant to docetaxel
(Feng et al, 2012). These findings reinforce breast carcinoma data
where the usage of BI 2536 improved chemotherapy results in
resistant cell populations (Hu et al, 2012). However, we did not
observe any effect of BI 2536 on the toxicity of cisplatin or
gemcitabine in MPM cell cultures, suggesting a different role
of PLK1 in MPM. Additional preclinical studies are required to
provide a rationale for the use of anti-PLK1 therapy in
chemotherapy-resistant patients or in combination with current
chemotherapy.

In conclusion, we have demonstrated the applicability of RNAi
screening to uncover new treatment targets for MPM. Our screen
identified PLK1, CDK1 and NDC80 as novel targets with clear
roles in MPM cell growth. Small-molecule inhibitors of these
targets were growth inhibitory in MPM cell lines, and CDK1 and
NDC80 inhibition also sensitised MPM cells to cisplatin.
Furthermore, we have identified PLK1 expression as an independent
prognostic factor. The need for new treatment approaches for
MPM is clear. Given our promising findings, and the synergistic
effects of small-molecule inhibitors of PLK1, CDK1 and NDC80 in
combination with chemotherapy in other malignancies, further
evaluation of these approaches in xenograft models is warranted.
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Table 2. (A) and (B) Univariate and multivariate analyses of PLK1, CDK1
expression and known prognostic factors in MPM

Hazard ratio 95% CI; P-value

(A) Univariate Analysis

PLK1 (as a continuous
variable/10% increments)

1.88 1.32–2.68; P¼0.001

PLK1 expression of X10%
(vs o10%)

2.09 1.25–3.50; P¼0.005

CDK1 (as a continuous
variable/10% increments)

1.01 0.93–1.09; P¼0.861

Non-epithelioid histology
(vs epithelioid)

2.67 1.87–3.81; Po0.001

Age (variable/10-year
increase)

1.39 1.17–1.65; Po0.001

Gender—male (vs female) 1.84 1.18–2.87; P¼0.007

(B) Multivariate Analysis

PLK1 (as a continuous
variable/10% increments)a

1.90 1.28–2.80; P¼0.001

PLK1 expression of X10%
(vs o10%)a

2.05 1.21–3.46; P¼0.007

Non-epithelioid histology
(vs epithelioid)

2.39 1.65–3.46; Po0.001

Age (variable/10-year
increase)

1.22 1.01–1.48; P¼0.042

Gender—male (vs female) 1.47 0.90–2.38; P¼0.120

aPLK1 as a continuous variable and as a categorical variable was analysed separately in the
multivariate model with the other variables.
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