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Acute lymphoblastic leukemia: a comprehensive review and
2017 update
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Acute lymphoblastic leukemia (ALL) is the second most common acute leukemia in adults, with an incidence of over 6500 cases per
year in the United States alone. The hallmark of ALL is chromosomal abnormalities and genetic alterations involved in
differentiation and proliferation of lymphoid precursor cells. In adults, 75% of cases develop from precursors of the B-cell lineage,
with the remainder of cases consisting of malignant T-cell precursors. Traditionally, risk stratification has been based on clinical
factors such age, white blood cell count and response to chemotherapy; however, the identification of recurrent genetic alterations
has helped refine individual prognosis and guide management. Despite advances in management, the backbone of therapy
remains multi-agent chemotherapy with vincristine, corticosteroids and an anthracycline with allogeneic stem cell transplantation
for eligible candidates. Elderly patients are often unable to tolerate such regimens and carry a particularly poor prognosis. Here, we
review the major recent advances in the treatment of ALL.
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INTRODUCTION
Acute lymphoblastic leukemia (ALL) is a malignant transformation
and proliferation of lymphoid progenitor cells in the bone marrow,
blood and extramedullary sites. While 80% of ALL occurs in
children, it represents a devastating disease when it occurs in
adults. Within the United States, the incidence of ALL is estimated
at 1.6 per 100 000 population.1 In 2016 alone, an estimated 6590
new cases were diagnosed, with over 1400 deaths due to ALL
(American Cancer Society). The incidence of ALL follows a bimodal
distribution, with the first peak occurring in childhood and a
second peak occurring around the age of 50.2 While dose-
intensification strategies have led to a significant improvement in
outcomes for pediatric patients, prognosis for the elderly remains
very poor. Despite a high rate of response to induction
chemotherapy, only 30–40% of adult patients with ALL will
achieve long-term remission.3

PATHOPHYSIOLOGY
The pathogenesis of ALL involves the abnormal proliferation and
differentiation of a clonal population of lymphoid cells. Studies in
the pediatric population have identified genetic syndromes that
predispose to a minority of cases of ALL, such as Down syndrome,
Fanconi anemia, Bloom syndrome, ataxia telangiectasia and
Nijmegen breakdown syndrome.4–7 Other predisposing factors
include exposure to ionizing radiation, pesticides, certain solvents
or viruses such as Epstein-Barr Virus and Human Immunodefi-
ciency Virus.8–10 However, in the majority of cases, it appears as a
de novo malignancy in previously healthy individuals. Chromoso-
mal aberrations are the hallmark of ALL, but are not sufficient to
generate leukemia. Characteristic translocations include t(12;21)
[ETV6-RUNX1], t(1;19) [TCF3-PBX1], t(9;22) [BCR-ABL1] and rearran-
gement of MLL.11 More recently, a variant with a similar gene

expression profile to (Philadelphia) Ph-positive ALL but without
the BCR-ABL1 rearrangement has been identified. In more than
80% of cases of this so-called Ph-like ALL, the variant possesses
deletions in key transcription factors involved in B-cell develop-
ment including IKAROS family zinc finger 1 (IKZF1), transcription
factor 3 (E2A), early B-cell factor 1 (EBF1) and paired box 5
(PAX5).12 Similarly, kinase-activating mutations are seen in 90% of
the Ph-like ALL. The most common of these include rearrange-
ments involving ABL1, JAK2, PDGFRB, CRLF2 and EPOR, activating
mutations of IL7R and FLT3 and deletion of SH2B3, which encodes
the JAK2-negative regulator LNK.13 This has significant therapeutic
implications as it suggests that Ph-like ALL, which tends to carry a
worse prognosis, may respond to kinase inhibitors. In fact, Roberts
et al.14 showed that cell lines and human leukemic cells expressing
ABL1, ABL2, CSF1R and PDGFRB were sensitive in vitro and in vivo
human xenograft models to second-generation TKIs (for example,
dasatinib.); those with EPOR and JAK2 rearrangements were
sensitive to JAK kinase inhibitors (for example, ruxolitinib); and
those with ETV6-NTRK3 fusion were sensitive to ALK inhibitors
crizotinib. Furthermore, Holmfeldt et al.15 recently described the
genetic basis of another subset with poor outcomes, hypodiploid
ALL. In near-haploid (24–31 chromosomes) ALL, alterations in
tyrosine kinase or Ras signaling was seen in 71% of cases and in
IKAROS family zinc finger 3 (IKZF3) in 13% of cases. In contrast,
low-hypodiploid (32–39 chromosomes) ALL, alterations in p53
(91%), IKZF2 (53%) and RB1 (41%) were more common. Both near-
haploid and low-hypodiploid exhibited activation of Ras- and
PI3K-signaling pathways, suggesting that these pathways may be
a target for therapy in aggressive hypodiploid ALL.15

Most of the clinical manifestations of ALL reflect the accumula-
tion of malignant, poorly differentiated lymphoid cells within the
bone marrow, peripheral blood, and, extramedullary sites.
Presentation can be nonspecific, with a combination of
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constitutional symptoms and signs of bone marrow failure
(anemia, thrombocytopenia, leukopenia). Common symptoms
include ‘B symptoms’ (fever, weight loss, night sweats), easy
bleeding or bruising, fatigue, dyspnea and infection. Involvement
of extramedullary sites commonly occurs and can cause
lymphadenopathy, splenomegaly or hepatomegaly in 20% of
patients.16,17 CNS involvement at time of diagnosis occurs in 5–8%
of patients and present most commonly as cranial nerve deficits
or meningismus.3 T-cell ALL also may present with a
mediastinal mass.
Diagnosis is established by the presence of 20% or more

lymphoblasts in the bone marrow or peripheral blood.16 Evalua-
tion for morphology, flow cytometry, Immunophenotyping and
cytogenetic testing is valuable both for confirming the diagnosis
and risk stratification. Lumbar puncture with CSF analysis is
standard of care at the time of diagnosis to evaluate for CNS
involvement. If the CNS is involved, brain MRI should be
performed. Other evaluation includes complete blood count with
differential and smear to evaluate the other hematopoietic cell
lines, coagulation profiles and serum chemistries. Baseline uric
acid, calcium, phosphate and lactate dehydrogenase should be
recorded to monitor for tumor lysis syndrome.

CLASSIFICATION
The first attempt at classifying ALL was the French American
British (FAB) morphological criteria that divided ALL into 3
subtypes (L1, L2 and L3) based on cell size, cytoplasm, nucleoli,
vacuolation and basophilia.18 In 1997, the World Health Organiza-
tion proposed a composite classification in attempt to account for
morphology and cytogenetic profile of the leukemic blasts and
identified three types of ALL: B lymphoblastic, T lymphoblastic and
Burkitt-cell Leukemia.19 Later revised in 2008, Burkitt-cell Leukemia
was eliminated as it is no longer seen as a separate entity from
Burkitt Lymphoma, and B-lymphoblastic leukemia was divided
into two subtypes: B-ALL with recurrent genetic abnormalities and
B-ALL not otherwise specified. B-ALL with recurrent genetic
abnormalities is further delineated based on the specific
chromosomal rearrangement present (Table 1).20 In 2016, two
new provisional entities were added to the list of recurrent genetic
abnormalities and the hypodiploid was redefined as either low
hypodiploid or hypodiploid with TP53 mutations.21 In adults, B-cell
ALL accounts for ~ 75% of cases while T-cell ALL comprises the
remaining cases.

PROGNOSTIC FACTORS
Accurate assessment of prognosis is central to the management of
ALL. Risk stratification allows the physician to determine the most
appropriate initial treatment regimen as well as when to consider
allogeneic stem cell transplantation (Allo-SCT). Historically, age
and white blood cell count at the time of diagnosis have been
used to risk stratify patients. Increasing age portends a worsening
prognosis. Patients over the age of 60 have particularly poor
outcomes, with only 10–15% long-term survival.22 Age is at least
in part a surrogate for other prognosticators as the elderly tend to
have disease with intrinsic unfavorable biology (for example,
Philadelphia chromosome positive, hypodiploidy and complex
karyotype), more medical comorbidities and inability to tolerate
standard chemotherapy regimens but helps guide therapy none-
theless. In the largest prospective trial to determine optimal
treatment, MRC UKALL XII/ECOG E2993 found a significant
difference of disease-free (DFS) and overall survival (OS) based
on age using a cutoff of 35 in Ph-negative disease.23 Similarly, they
found an elevated white blood cell count at diagnosis, defined as
430× 109 for B-ALL or 4100 109 for T-ALL, was an independent
prognostic factor for DFS and OS. On the basis of these results, Ph-
negative disease could be categorized as low risk (no risk factors
based on age or WBC count), intermediate risk (age 435 or
elevated WBC count), or high risk (age 435 and elevated WBC
count). The 5-year OS rates based on these risk categories were 55,
34 and 5%, respectively.23

Although clinical factors play an important role in guiding
therapy, cytogenetic changes have a significant role in risk
determination. The cytogenetic aberration with the greatest
impact on prognosis and treatment is the presence of the
Philadelphia chromosome, t(9;22). The prevalence of t(9;22) in
adult ALL can range from 15–50% and increases with age.24 Ph-
positivity has implications both in terms of prognosis and for
treatment. Historically, Ph-positive ALL has a 1-year survival of
around 10%. However, with the development of TKIs, survival has
improved and thus the Ph-status of all patients must be obtained
prior to starting therapy. Subsequent analysis of MRC UKALL XII/
ECOG E2993, identified cytogenetic subgroups of Ph-negative
disease with inferior outcomes. These included t(4;11), KMT2A
translocation, t(8;14), complex karyotype (⩾ 5 chromosomal
abnormalities) and low hypodiploidy (30–39 chromosomes)/near
triploidy (60–78 chromosomes). In contrast, patients with hyper-
diploidy and del(9p) had a significantly better outcome.25 In a later
study, the Southwest Oncology Group (SWOG) showed that
among the 200 study patients, cytogenetic profile was a more
important prognostic factor than age or WBC count.26 More
recently, a subset of high-risk ALL without t(9;22) has been

Table 1. WHO classification of acute lymphoblastic leukemiaa

B-cell lymphoblastic leukemia/lymphoma, not otherwise specified
B-cell lymphoblastic leukemia/lymphoma, with recurrent genetic abnormalities
B-cell lymphoblastic leukemia/lymphoma with hypodiploidy
B-cell lymphoblastic leukemia/lymphoma with hyperdiploidy
B-cell lymphoblastic leukemia/lymphoma with t(9;22)(q34;q11.2)[BCR-ABL1]
B-cell lymphoblastic leukemia/lymphoma with t(v;11q23)[MLL rearranged]
B-cell lymphoblastic leukemia/lymphoma with t(12;21)(p13;q22)[ETV6-RUNX1]
B-cell lymphoblastic leukemia/lymphoma with t(1;19)(q23;p13.3)[TCF3-PBX1]
B-cell lymphoblastic leukemia/lymphoma with t(5;14)(q31;q32)[IL3-IGH]
B-cell lymphoblastic leukemia/lymphoma with intrachromosomal amplification of chromosome 21 (iAMP21)b

B-cell lymphoblastic leukemia/lymphoma with translocations involving tyrosine kinases or cytokine receptors (‘BCR-ABL1–like ALL’)b,14

T-cell lymphoblastic leukemia/lymphomas
Early T-cell precursor lymphoblastic leukemiab

Abbreviations: ALL, acute lymphoblastic leukemia; WHO, World Health Organization. aOn the basis of The 2016 revision to the World Health Organization
classification of myeloid neoplasms and acute leukemia.23 bProvisional entity.
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identified with a genetic profile similar to that of Ph-positive ALL.
This so called, Ph-like ALL has been associated with poor response
to induction chemotherapy, elevated minimal residual disease and
poor survival.13,14,27

In addition to disease characteristics at the outset, it has long
been recognized that response to initial therapy predicts out-
come. Historically, treatment response was evaluated morpholo-
gically. Recently, it has become standard practice to evaluate
patients for minimal residual disease (MRD) using molecular
techniques such as flow cytometry and PCR.28 Several studies
have shown the importance of MRD in assigning risk.29–34

Bruggemann et al.29 re-stratified standard-risk patients to low
risk, intermediate risk and high risk with relapse rates of 0%, 47%
and 94%, respectively, based on the persistence of elevated MRD,
defined as410− 4. In a multivariate analysis of 326 adolescent and
adult patients with high-risk Ph-negative ALL treated in The
Programa Espanol de Tratamientos en Hematologia (PETHEMA
ALL-AR-03), Ribera et al.35 showed that poor MRD clearance,
defined as levels 41 × 10− 3 after induction and levels 45 × 10− 4

after early consolidation by flow cytometry, was the only
significant prognostic factor for disease-free and overall survival.
On the basis of what is known about prognostic factors in adult

ALL, the National Comprehensive Cancer Network (NCCN) has
developed recommendations to approach risk stratification.16 The
National Cancer Institutes defines adolescent and young adults
(AYA) to be those aged 15–39 years. The NCCN recognizes that
AYA may benefit from treatment with pediatric-inspired regimens
and thus are considered separately from adults 440 years.36,37

Both age groups are then stratified into high-risk Ph-positive and
standard-risk Ph-negative subgroups. The Ph-negative subgroup
can further be categorized as high-risk based on the presence of
MRD, elevated WBC (defined above) or unfavorable cytogenetics
(defined above).

ESTABLISHED TREATMENTS
The structure of treatment of adult ALL has been adapted from
pediatric protocols. Unfortunately, while long-term survival
approaches 90% for standard-risk pediatric ALL, the success rate
is much more modest in adults. Chemotherapy consists of
induction, consolidation and long-term maintenance, with CNS
prophylaxis given at intervals throughout therapy. The goal of
induction therapy is to achieve complete remission and to restore
normal hematopoiesis. The backbone of induction therapy
typically includes vincristine, corticosteroids and an
anthracycline.38,39 In the Cancer and Leukemia Group B 8811 trial,
Larsen et al.40 achieved a complete response rate of 85% and a
median survival of 36 months. The 4-week long induction
schedule consists of cyclophosphamide on day 1, 3 consecutive
days of daunorubicin, weekly vincristine, biweekly L-asparaginase
and 3 weeks of prednisone.40 Due to high induction-related
mortality, one-third dose reductions of cyclophosphamide and
daunorubicin were implemented for patients older than 60 and
the duration of prednisone was shortened to 7 days in this age
group. The role of L-asparaginase, while standard in pediatric
protocols, is a challenge in adults at times due to the increased
rate of adverse events.41 In fact, in the UKALL 14 Trial, Patel
et al.42,43 demonstrated that asparaginase toxicity was the leading
cause of induction-related mortality and the protocol was
amended to omit asparaginase for patients over the age of 40.
The MRC UKALL XII/ECOG 299323 regimen utilizes a similar
structure to CALGB 8811. Induction is divided into two phases
of four weeks. In contrast to CALGB 8811, cyclophosphamide is
omitted in phase I of induction, but a single dose of intrathecal
methotrexate is added for CNS prophylaxis. In phase II of
induction, cyclophosphamide is introduced along with cytarabine,
oral 6-mercaptopurine (6-MP), four additional intrathecal doses of
methotrexate, and cranial radiation if CNS is positive. After

induction therapy, patients received three cycles of intensification
therapy of methotrexate with leucovorin rescue and L-asparagi-
nase. Eligible patients with high-risk disease and a matched donor,
then underwent Allo-SCT. All others were randomized to standard
consolidation/maintenance or autologous stem cell transplant.
This study yielded a complete response rate of 91% and an overall
5-year survival of 38%.23

The Hyper-CVAD (HCVAD)/ Methotrexate-cytarabine regimen is
utilizes an alternative structure to the approaches described
above. It consists of four cycles of hyperfractionated cyclopho-
sphamide, vincristine, doxorubicin and dexamethasone alternated
with four cycles of high dose cytarabine and methotrexate.44 CNS
prophylaxis with 4-16 doses of intrathecal chemotherapy depend-
ing on predetermined risk of CNS disease. HCVAD has demon-
strated similar efficacy to the ECOG trial with a 92% complete
response rate and 32% 5-year disease-free survival.44 Several
studies have suggested a benefit to using dexamethasone as
opposed to prednisone due to the ability of dexamethasone to
achieve higher concentrations in the CNS. Despite a reduction in
CNS relapse and improved event-free survival, dexamethasone
has increased risk of adverse events compared to prednisone.
Since there have been no studies comparing overall survival, the
benefit of one corticosteroid over the other has not been
established.45,46

After induction, eligible patients may go on to Allo-SCT while all
others go on to intensification/consolidation and maintenance.47

Consolidation varies in the different protocols, but generally utilize
similar agents to induction and includes intrathecal chemotherapy
and cranial radiation for CNS prophylaxis at times. Maintenance
therapy consists of daily 6-MP, weekly methotrexate, and
vincristine and a 5-day prednisone pulse every 3 months.
Maintenance is administered for 2–3 years after induction, beyond
which it has not been shown to have benefit.17,47

Special consideration must be made in the treatment of
Ph-positive ALL. Historically, Ph-positive ALL was a very bad
player with 5-year survival ~ 5–20% and Allo-SCT being the only
chance for cure.48,49 Various studies have found that matched-
sibling Allo-SCT may improve long-term survival to 35–55%,
however, availability of matched donors represents a significant
limitation.49–51 The advent of TKIs marked a turning point in the
treatment of Ph-positive ALL. Thomas et al.52,53 showed that when
added to traditional HCVAD, imatinib resulted in improvement in
3-year OS (54 vs 15%). Despite these promising results, some
patients fails treatment due to resistance or relapse, particularly in
the CNS where imatinib has limited penetration.54 Second-
generation ABL kinase inhibitor, dasatinib, was developed as a
dual src/abl kinase inhibitor for chronic myeloid leukemia with a
superior resistance profile to imatinib. Dasatinib was also shown to
penetrate the blood-brain barrier and was effective at treating
CNS disease in a mouse model and pediatric Ph-positive ALL.55 In
the first study of dasatinib in Ph-positive ALL, Ravandi et al.56

found a CR rate of 96% when dasatinib was combined with
HCVAD, and a 5-year OS of 46%. In a subsequent, multi-center trial
HCVAD plus dasatinib achieve a 3-year OS of 71% in adult patients
younger than 60.57 In addition, prior resistance to imatinib did not
preclude a response to dasatinib.58 In addition, dasatinib was
shown to be effective in inducing complete remission when used
in combination with prednisone and intrathecal methotrexate.59

In the GIMEMA LAL1205 study,59 it was noted that the most
common cause of relapse was a T315I mutation in the ABL kinase
doman. Ponatinib, a third-generation TKI with the ability to inhibit
most BCR-ABL1 kinase domain mutations, has recently gained
approval for resistant Ph-positive ALL. The PACE trial60 demon-
strated the ability of ponatinib to generate a cytogenetic response
in 47% of Ph-positve ALL patients after dasatinib failure. When
compared head-to-head with dasatinib, ponatinib achieved
significantly better 3-year EFS and OS when used as frontline
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therapy.42,61,62 These data suggest that ponatinib may soon have a
role in the frontline therapy of Ph-positive ALL.
Recent studies have suggested that the AYA population,

defined as aged 15–39, may benefit from treatment on
pediatric-inspired protocols. In an analysis of 262 AYA patients
aged 16–21 on pediatric protocol CCG 1961, Nachman et al.63

reported a 5-year EFS of 68%. Furthermore, patients in the study
that were treated on augmented intensity therapy performed
better. In a prospective study, Stock et al.64 treated 317 patients
aged 17–39 on Children’s Oncology Group AALL0232 protocol.
Median EFS approached 60 months, which was statistically higher
than the null hypothesis of 32 months. OS at 2-years was 78%.64

Similarly, The Group for Research on Adult Acute Lymphoblastic
Leukemia (GRAAL), compared 225 patients up to the age of 60
who were treated on pediatric-inspired regimen and historical
data from 712 adults treated on standard adult regimen
LALA-93.36 They observed a significant improvement in CR, EFS
and OS, which was most marked in patients younger than age of
45 years. In fact, in patients older than 45 years, there was a
significantly higher rate of chemotherapy-related events com-
pared to younger patients, suggesting that an age cutoff for
pediatric-inspired regimens is appropriate. However still one of
the adult regimens is still considered for AYA patients is
HCVAD± rituximab. An MD Anderson Cancer Center study
revealed no significant difference in CR rate or OS in AYA patients
treated with HCVAD± rituximab vs an augmented-Berlin-
Frankfurt-Munster regimen.65

REFRACTORY/RELAPSED DISEASE
While 85–90% of patients go into remission after induction
therapy, there are subsets that are refractory to induction therapy.
In addition, a majority of patients that do achieve CR go on to
relapse. Options of salvage therapy for relapsed/refractory (r/r) Ph-
negative disease include augmented cytotoxic chemotherapy,
reformulated single-agent chemotherapy and novel monoclonal
antibodies. Augmented-HCVAD for salvage therapy was inspired
by pediatric regimens that employ intensified doses of vincristine,
corticosteroids and asparaginase in frontline therapy. Faderl
et al.66 treated 90 patients (median age 34) with relapsed or
refractory disease with HCVAD in which the dosing of vincristine,
dexamethasone and asparaginase where intensified as follows:
vincristine 2 mg i.v. weekly on days 1, 8 and 15; dexamethasone
80 mg i.v. or orally (p.o.) on days 1–4 and 15–18, and
pegaspargase 2500 units/m2 i.v. on day 1 of the hyper-CVAD
courses (1, 3, 5 and 7) and day 5 of the methotrexate/cytarabine
courses (2, 4, 6 and 8). The majority of patients were in first salvage
and ten patients were primary refractory, and patients with prior
exposure to HCVAD were not excluded. Complete response was
observed in 47% of the patients, with a median duration of
5 months. Median DFS and OS were 6.2 and 6 months
respectively.66 It was also noted that the addition of rituximab
to HCVAD for B-ALL with high CD20 expression to improve the
activity of this salvage regimen.
In patients with relapsed/refractory ALL, particularly those with

multiple relapses, toxicity of multi-agent cytotoxic therapy may be
limiting. Therefore, attempts have been made at salvage therapy
with a single agent. In subgroup analysis of 70 patients receiving
second salvage therapy with a single agent (most commonly
vinorelbine (6), clofarabine (5), nelarabine (4) and topotecan (4)),
only 3 achieved a complete response.67,68 Vincristine sulfate
liposomes injection (VSLI) was developed to overcome the dosing
and pharmacokinetic limitations of nonliposomal vincristine (VCR).
In a phase II study in adults with Ph-negative ALL in their second
or greater relapse, VSLI was administered weekly at a dose of
2.25 mg/m2.69 Of the 65 adults enrolled, 20% achieved complete
response with a median duration of 23 weeks (range 5–66).
Twelve patients were bridged to Allo-SCT, with five long-term

survivors.69 This study led to the accelerated approval of VSLI for
salvage therapy in 2012. VSLI was well tolerated with a side effect
profile similar to standard-formulation VCR, despite the massive
cumulative doses of VCR achieved.
Despite the modest ability of cytotoxic chemotherapy to

prolong survival, the only hope for long-term survival in these
regimens remains Allo-SCT. However, recently novel monoclonal
antibodies have transformed the landscape of salvage therapy by
offering a chance at cure may be without Allo-SCT. The first of
these is the bispecific anti-T-cell receptor/anti-CD19 antibody,
blinatumomab. The proposed mechanism of action of blinatumo-
mab is that it engages T cells to activate a B-cell specific
inflammatory and cytolytic response.70 Blinatumomab was first
studied in patients with MRD positive ALL. In one trial, 80% of
patients became MRD negative after the first cycle of blinatumo-
mab, with 60% of patients remaining in CR at a median follow-up
of 33 months.71 Importantly, in a multi-center trial (BLAST),
Gokbuget et al.72 confirmed the ability of blinatumomab to
eliminate MRD and showed no difference in OS or relapse-free
survival (RFS) between patients who received Allo-SCT during the
first CR (CR1) and those who did not. Based on these results,
blinatumomab was studied for relapsed/refractory Ph-negative
ALL. The landmark study was a multi-center, single-arm, open-
label phase 2 trial in which 189 patients with primary refractory
and relapsed ALL received single-agent therapy with blinatumo-
mab. CR was achieved after 2 cycles in 43 with 82% achieving
MRD negativity. The median response duration and the overall
survival were 9 and 6 months, respectively.73 Based on these
results, blinatumomab was approved by the FDA for relapsed and
refractory ALL in 2016. Subsequently, blinatumomab was com-
pared to investigator’s choice of chemotherapy for r/r Ph-negative
ALL in the phase 3 randomized trial (TOWER study). The
blinatumomab study group (n= 271) had a median survival of
7.7 months (95% confidence interval (CI): 5.6, 9.6) versus
4.0 months (95% CI: 2.9, 5.3) for standard of care (n= 134)
(P= 0.012, hazards ratio (HR), 0.71).74 The study was terminated
early for efficacy based on these results. Blinatumomab has also
been investigated for r/r Ph-positive disease. In the ALCANTARA
trial, standard dose blinatumomab was given for up to 5 cycles in
45 patients. CR was observed in 36 and 88% of whom were MRD
negative, and with a median follow-up of 9 months, the median
OS was 7.1 months.75 Future investigation is planned for the
frontline use of blinatumomab for Ph-positive ALL in conjunction
with TKIs.76 The toxicity profile of blinatumomab is acceptable.
The most frequent adverse events include fever, chills, neutrope-
nia, anemia and hypogammaglobulinemia.3 More significant
adverse events are rare, but include cytokine release syndrome,
altered mental status and seizures.73 Death from sepsis that is
thought to be treatment-related has been reported.
Frontline therapy is the same for B-cell ALL and T-cell ALL.

However, owing to different biology of the two subtypes, T-cell
ALL is not amenable to salvage treatment with blinatumomab.
Fortunately, alternative options for salvage therapy exist.
Nelarabine is a T-cell specific purine nucleoside analog that is
FDA approved for r/r T-cell ALL. Nelarabine accumulates in T cells
at a high rate and incorporates into DNA causing an inhibition of
DNA synthesis and subsequent apoptosis.77 In a phase 2, open-
label, multi-center trial, nelarabine was administered on alter-
nate day schedule (days 1, 3 and 5) at 1.5 g/m2/day for r/r T-cell
ALL. Cycles were repeated every 22 days. The rate of complete
remission was 31% (95% CI, 17, 48%), the median DFS and OS
were 20 weeks with a 1-year OS of 28%.77 However, there is still
more that needs to be done to achieve a better response and
overall survival in patients with relapsed/refractory B- and
T-cell ALL.
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FUTURE THERAPIES
1-Monoclonal antibodies
A-CD22-Directed therapy. CD22 is a B-lineage differentiation
antigen expressed in B-cell ALL in 50–100% of adults and 90% of
children.78–80 Upon binding of an antibody, CD22 is rapidly
internalized, thus making it an attractive target for delivering
immunotoxin to leukemic cells.81

Epratuzumab. Epratuzumab is an unconjugated monoclonal
antibody targeting CD22 that has been studied in pediatric and
adult relapsed/refractory ALL. Epratuzumab was evaluated in 15
pediatric patients as part of a salvage therapy regimen. The
antibody was administered as a single-agent followed by the
antibody in combination with standard re-induction chemother-
apy. The treatment resulted in a CR in 9 of the patients, with 7
achieving complete MRD clearance at the end of re-induction.82 A
phase 2 study in adults with relapsed/refractory disease evaluated
the addition of epratuzumab to clofaribine/cytarabine. The study
demonstrated a superior response rate when compared to
historical data of clofaribine/cytarabine alone.83 More recently,
epratuzumab conjugated to the topoisomerase I inhibitor, SN-38,
has been shown to have activity against B-cell lymphoma and
leukemia cell lines in in vitro and in vivo preclinical studies.84

Inotuzumab ozogamicin. Inotuzumab ozogamicin (InO) is a
monoclonal antibody against CD22 that is conjugated to
calicheamicin, a potent cytotoxic compound that induces
double-strand DNA breaks.85 Upon internalization of the immu-
noconjugate, calicheamicin binds DNA and causes double-
stranded DNA breaks, which induces apoptosis. Preclinical studies
showed that calicheamicin conjugated to an anti-CD22 antibody
resulted in potent cytotoxicity leading to regression of B-cell
lymphoma and prevention of xenograft establishment at pico-
molar concentrations.86 Phase 1 studies in non-hodgkin lym-
phoma (NHL) established a maximum tolerated dose of 1.8 mg/m2

InO given intravenously every 3 to 4 weeks.87 Subsequently, InO
was studied in adults with relapsed/refractory ALL.88 In this phase
2 trial, 90 patients were treated with either a single infusion every
3 to 4 weeks or weekly InO infusions. Cumulative doses were
equivalent among the two treatment strategies. Overall response
rate was 58%, with similar response between the two dosing
schedules. Median survival was 6.2 months, with a non-significant
benefit seen in weekly dosing. However, toxicity was greatly
improved by weekly dosing, with a significant reduction in fever,
hepatotoxicity and veno-occlusive disease.89 A second phase 2
study of 35 patients with CD22+ ALL in second salvage or later
showed similar complete response rate (66%) and median overall
survival (7.4 months).90 Based on these results, Kantarjian et al.91

compared weekly dosing of InO to standard chemotherapy for
relapsed/refractory ALL. The rate of complete remission was
significantly higher in the InO group versus standard chemother-
apy 80.7% (95% CI, 72.1–87.7) vs 29.4% (95% CI, 21.0–38.8),
Po .001).91 Progression-free survival (5 months vs 1.8 months) and
overall survival (7.7 months vs 6.7 months) were also significantly
prolonged with InO compared to standard chemotherapy. The
most common adverse events of InO treatment included
thrombocytopenia and neutropenia. Veno-occlusive liver disease
occurred in 11% of patients treated with InO compared to 1% of
those receiving standard chemotherapy.91 Based on these results,
InO was granted Breakthrough Therapy status by the FDA in 2015
and is a strong candidate for expedited approval for relapsed/
refractory ALL.
InO has also been studied in frontline therapy in combination

with low-intensity HCVAD for elderly patients 460 years.92 These
patients are prone to adverse events from chemotherapy and
have poorer outcomes than their younger counterparts. In
attempt to reduce toxicity, doxorubicin was eliminated from

induction therapy, and cyclophosphamide, prednisone, metho-
trexate and cytarabine were given at reduced doses. InO was
given during each of the first four courses. The regimen was well
tolerated and produced superior 1-year OS as compared to
historical data among similar patient population (78 vs 60%).92

Moxetumomab pasudodotox. A third anti-CD22 monoclonal
antibody, moxetumomab, is currently in development for treat-
ment of pediatric and adult ALL. Moxetumomab is a reformulation
of an older study drug, BL22, which was composed the variable
region (Fv) of an anti-CD22 monoclonal antibody fused to
Pseudomonas aeruginosa exotoxin A.93 BL22 was shown to be
highly active against Hairy Cell Leukemia in a phase 2 trial.94 In a
phase 1 trial of children with relapsed/refractory ALL, BL22 was
well tolerated and exhibited anti-leukemic activity at all doses, but
clinical benefits were transient and modest.95 Therefore, BL22 was
reformulated as moxetumomab to contain a Fv fragment with
greater affinity for CD22. In phase 1 trials, moxetumomab showed
an overall activity rate of 70% in children with relapsed/refractory
ALL.96 Enrollment is ongoing for a phase 1/2 trial of moxetumo-
mab pasudodotox for treatment of relapsed/refractory ALL in
adults.97

Combotox. Combotox is a combination immunotoxin that
contains a 1:1 mixture of anti-CD19 and anti-CD22 antibodies,
both conjugated to the cytotoxin deglycosylated ricin-A chain. In
pediatric patients with relapsed/refractory ALL, combotox led to a
CR in 3 of 17 patients. In addition, six additional patients
experienced a 495% reduction in peripheral blasts.98 In adults
with relapsed/refractory disease, combotox led to reduction of
peripheral blasts in all patients; however, a durable response was
not seen as blast count rebounded quickly after the final dose of
combotox.99 A phase I trial is recruiting patients to evaluate
combotox in combination with cytarabine for adults with
relapsed/refractory ALL (NCT01408160).

B-CD20. CD20 is a B-lineage specific antigen expressed at nearly
all stages of differentiation on the surface of both normal and
malignant B-cells. Signaling through CD20 plays a role in cell cycle
progression, differentiation pathways and regulation of apoptosis.
CD20 is expressed in 40–50% of precursor lymphoblasts, and
confers a worse prognosis.100 Moreover, CD20-positive leukemia
responds poorly to dose intensification, highlighting the need for
targeted therapy. The addition of rituximab, a first-generation anti-
CD20 monoclonal antibody, has improved outcomes in these
patients, but resistance to rituximab represents a limitation to
its use.

Ofatumumab. Ofatumumab is a second-generation anti-CD20
antibody with a distinct binding site from that of rituximab.
Ofatumumab was first showed to have benefit in fludarabine-
refractory chronic lymphocytic leukemia, irrespective of prior
rituximab exposure.101 Ofatumumab induces higher levels of
complement-dependent cytotoxicity (CDC) and has a slower
dissociation rate than rituximab, and thus holds promise for
CD20+ lymphoid malignancies both as frontline therapy and as
salvage for rituximab-refractory disease.102,103 In a phase 2 study,
ofatumumab was used in combination with HCVAD in patients
with either newly diagnosed pre-B CD20+ ALL or those who had
completed a single course of chemotherapy. In all study patients,
CD20+ expression was41%.104 Ofatumumab was administered at
a dose of 2 grams on days 1 and 11 of the first 4 cycles of
induction therapy. All but one patient (98%) achieved CR after
cycle 1 and 93% of patients were negative for MRD at end
induction. The 3-year CR and OS rates were 78% and 68%,
respectively.105 This is similar to benefits seen when rituximab was
used as frontline therapy in CD20+ ALL.106 Ofatumumab
represents a potential alternative frontline therapy for CD20+
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pre-B-ALL and an option for patients who failed a rituximab-based
regimen.

Obinutuzumab. Another novel anti-CD20 monoclonal antibody,
obinutuzumab, has shown promise in preclinical trials for CD20-
positive B-ALL. Obinutuzumab was engineered to have enhanced
affinity for the FcγRIIIa receptor on effector cells and thus
enhanced antibody-dependent cell-mediated cytotoxicity
(ADCC).107 This compromises the ability of obinutuzumab to
activate complement and predictably, CDC was inferior to that of
rituximab and ofatumumab in vitro. However, obinutuzumab
induced direct cell death and ADCC more rapidly and effectively.
When all three mechanisms of cell death were evaluated together
in B-cell depletion assays, obinutuzumab was more effective than
either rituximab or ofatumumab achieving higher maximal
depletion and lower EC50. Furthermore, obinutuzumab was
superior in inhibiting growth in NHL xenograft models.107 Awasthi
et al.108 compared obinutuzumab to ritixumab in pre-B-ALL cell
lines and found obinutuzumab to be superior in inducing cell
death and ADCC. In a pre-B-ALL xenograft model, overall survival
was improved with obinutuzumab compared to ritixumab.108 In
clinical trials, obinutuzumab has been added to chlorambucil for
treatment of adults with CLL and shown to prolong progression-
free survival and improve complete response rate when compared
to rituximab and chlorambucil.109 Taken together, these results
suggest a role for obinutuzumab in CD20+ pre-B-ALL.

REGN1979. REGN1979 is a biallelic monoclonal antibody target-
ing CD20 and CD3. The theory of REGN1979 is similar to that of
blinatumumab, to engage T cells and B-cells thus resulting in
activation of T-cell immune response against B-cells. REGN1979
prevented the establishment of lymphoma xenografts and led to
complete tumor regression in murine models.110 In addition, in a
primate model, REGN1979 led to a complete and durable
depletion of B-cells. When compared to treatment with rituximab,
treatment with REGN1979 led to significantly more profound
depletion of B-cells.110 The safety of REGN1979 was established in
a phase 1 trial of 25 patients with NHL and CLL. Dose-dependent
antitumor activity was observed. The most significant adverse
events include cytokine release syndrome (CRS) and
hypotension.111 A phase 2 trial of REGN1979 in relapsed/refractory
ALL is currently open for recruitment (NCT02651662).

C-CD19. CD19 is the most widely expressed B-lineage specific
antigen, expressed during all stages of differentiation, but lost on
maturation to plasma cells. CD19 serves as a co-receptor for the
B-cell surface immunoglobulin and its activation triggers a
phosphorylation cascade involving src-family kinases and PI3K as
well as the activation of c-myc, leading to proliferation and
differentiation.112–114 CD19 is expressed in nearly all B-cell
leukemias, and is rapidly internalized upon binding of an
antibody, making it an ideal candidate for immunoconjugate
therapy.115

Coltuximab ravtansine (SAR3419). Coltuximab ravtansine is an
anti-CD19 humanized monoclonal antibody conjugated to a
semisynthetic maytansinoid compound, an anti-tubulin molecule
similar to vincristine. Maytansinoids are more potent than vinca
alkaloids, and thus have been of limited use in systemic therapy
due to unacceptable toxicity.116 However, this potency makes
them attractive candidates for targeted delivery. In preclinical
studies, SAR3419 monotherapy delayed progression in pre-B-ALL
xenografts and provided objective response. When used in
combination with a chemotherapy regimen that mimicked
pediatric induction protocols, SAR3419 was effective at prolonging
the duration of remission.117 SAR3419 was then evaluated in a
Phase 1 clinical trial with CD19+ B-cell lymphoma. Dose-limiting
toxicities were reversible blurred vision and neuropathy. A

maximum tolerated dose (MTD) of 160 mg/m2 administered once
every three weeks was established. Reduction of tumor size was
seen in 74% of patients, including 47% of patients with rituximab-
resistant disease.118 An initial phase 2 clinical trial was terminated
early due to low response rate of 25%.119

Denintuzumab mafodotin (SGN-CD19A). A second anti-CD19
conjugated monoclonal antibody, denintuzumab mafodotin, is
currently in development. In this case, the antibody is linked to the
microtubule-disrupting agent monomethyl auristatin F (MMAF). In
a phase 1 study of patients with relapsed/refractory B-ALL or
aggressive B-cell lymphomas, a complete response rate of 35%
was observed.120 Dosing interval of 3 weeks was shown to be
superior to weekly dosing. An MTD was identified at 5 mg/kg
q3wk. Interestingly, among Ph-positive B-ALL, the response rate
was 63%, leading to recruitment of Ph-positive patients for an
expansion cohort. These results warrant further evaluation of
denintuzumab mafodotin for relapsed/refractory ALL.

ADCT-402. ADCT-402 is the newest anti-CD19 monoclonal anti-
body to enter development. It is a humanized monoclonal
antibody conjugated to a pyrrolobenzodiazepine (PBD). PBDs are
a class of natural antibiotics derived from actinomycetes bacteria
that inhibit cell division by binding in the minor groove of DNA
and cross-linking strands of DNA. In vivo studies show superior
antitumor activity of ADCT-402 against CD19-positive lymphoma
than maytansinoid or auristatin based therapy.121 A phase 1 trial
of ADCT-402 for relapsed/refractory ALL is underway
(NCT02669264).

D-CD25. CD25 is a cell surface antigen and component of the
Interleukin-2 receptor (IL-2 R) heterotrimer.122 Binding of IL-2 R by
its ligand activates JAK/STAT, MAP kinase and phosphoinositide
3-kinase (PI3K) signaling pathways, leading to cell proliferation.
IL-2 R is rapidly recycled upon binding of its ligand.123 The IL-2 R
signaling pathway is particularly activated in T-cell immune
response, and has thus been an attractive target for post-
transplant immunosuppression. In some studies, CD25 expression
has been as high as 30% of pre-B-ALL lymphoblasts, including
100% expression among the Ph-positive subset.124

ADCT-301. ADCT-301 is a monoclonal antibody against CD25
conjugated to a PBD. In preclinical studies, ADCT-301 has been
shown to be potently cytotoxic to CD25-positive anaplastic large
cell lymphoma and Hodgkin lymphoma cell lines. In vivo,
ADCT-301 exhibited antitumor activity in xenograft and dissemi-
nated mouse models.122 A phase 1 trial is recruiting participants
for ADCT-301 in relapsed/refractory AML and ALL (NCT02588092).

2-Proteasome inhibitor (Bortezomib)
Bortezomib, a proteasome inhibitor, was first approved for the
treatment of multiple myeloma. Preclinical studies have suggested
a synergistic role of bortezomib with dexamethasone and additive
effects to standard chemotherapy agents in acute leukemias.125 As
a single agent, bortezomib did not produce durable responses in
patients with relapsed/refractory ALL, despite demonstrable
proteasomal inhibition.126 However, in a phase 2 study, bortezo-
mib in combination with vincristine, dexamethasone, pegylated
asparaginase and doxorubicin produced a response rate of 80% in
children with relapsed/refractory pre-B-ALL.127 In a recent phase 2
COG trial, re-induction chemotherapy plus bortezomib resulted in
a complete response in 68% of children with relapsed pre-B-
ALL.128 Due to it’s ability to inhibit the NF-κB and NOTCH1
signaling pathways, bortezomib is being studied as frontline
therapy in T-cell ALL. Recruitment is ongoing for a phase 3 trial of
standard chemotherapy with or without bortezomib in children
and young adults (age 2–30) with newly diagnosed T-cell ALL or
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T-cell lymphoblastic lymphoma (NCT02112916). In adults, recruit-
ment has begun for a phase 2 trial of bortezomib with
combination chemotherapy in relapsed/refractory ALL
(NCT01769209).

3-JAK inhibitor (Ruxolitinib)
The JAK/STAT signaling pathway has been identified as a
significant mechanism by which leukemic cells bypass normal
growth and proliferation restrictions.13 In particular, Ph-like ALL
appears to be dependent on JAK signaling. The most common
rearrangements in Ph-like ALL involve the transmembrane
receptor CRLF2, which signals through downstream JAK kinases.
Many cytokine receptors, including IL-7 R, act through JAK kinases
as well. In addition, JAK1 and JAK2 mutations are found in
approximately half of CRLF2-rearranged Ph-like ALL.12–14 Preclini-
cal studies have suggested benefit of ruxolitinib for the treatment
of Ph-like ALL and CRLF2-rearranged ALL.129,130 In addition,
ruxolitinib inhibited tumor growth in in vitro and in vivo models
of T-ALL with a gain of function in IL-7 R-alpha subunit.131 A phase
2 trial of ruxolitinib with standard multi-agent chemotherapy is
currently open for recruitment of children, adolescents and adults
with newly diagnosed high-risk B-ALL with CRLF2 rearrangements
(NCT02723994).

4-Hypomethylating agent (Decitabine)
DNA methylation is an important epigenetic modification that
regulates gene expression. It has long been reported that DNA
methylation may play a role in the development of ALL and that
methylation status may be used as part of risk stratification.132–135

Decitabine is a cytosine analog that inhibits DNA methyltransfer-
ase by targeting it for degredation, thus causing hypomethylation
of key regulatory domains on DNA. This leads to differentiation
and suppression of tumor growth.136 Decitabine is currently
approved for the treatment of myelodysplastic syndrome (MDS).
In a case report, a young girl with her third-relapse of ALL was
treated with a decitabine and dexamethasone regimen based on
MDS dosing. She was able to undergo Allo-SCT after CR was
achieved with re-induction therapy and remained in CR 8 months
after transplant.137 In a MD Anderson phase I trial of decitabine for
relapsed/refractory ALL, decitabine was shown to have efficacy
when used in combination with Hyper-CVAD for re-induction
therapy.138 In addition, decitabine monotherapy is well tolerated
and thus offers a potential treatment option for relapsed disease
in patients that cannot tolerate multi-agent chemotherapy. In a
phase 2 study, decitabine and vorinostat (a histone deacetylase
inhibitor) were given prior to vincristine, prednisone, PEG-L-
asparaginase and doxorubicin for relapsed/refractory ALL.139

Results were promising with a CR rate of 50% (95% CI, 15.7–
84.3%) and the OR rate 75% (95% CI, 34.9–96.8%). Decitabine has
also been studied in preclinical trials of early T-cell precursor ALL
(ETP-ALL), where it has been shown to be synergistic to
conventional chemotherapy.140 Decitabine is currently being
studied in the post-Allo-SCT setting (NCT02264873) and in
combination with clofarabine, idarubicin and cytarabine for
relapsed/refractory AML and ALL (NCT01794702).

5-PI3K/mTOR Inhibitors
The phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and
mammalian target of rapamycin (mTOR) pathways are shown to
be constitutively activated in 50–75% of T-ALL.141 Preclinical
studies suggest that inhibition of the PI3K/AKT/mTOR pathways
may be an effective treatment for T-ALL.142–145 A dual PI3K/mTOR
inhibitor, NVP-BEZ235, potently inhibited the proliferation ALL
cells in vitro, causing G0/G1 arrest. Moreover, inhibition of
proliferation was synergistic when NVP-BEZ235 was combined
with cytotoxic agents.144 On the basis of this promising preclinical

data, several clinical trials are underway to evaluate the use of
mTOR and PI3K inhibitors in combination with multi-agent
chemotherapy in the frontline and relapsed/refractory setting
(NCT01756118, NCT02484430, NCT01523977, NCT01403415,
NCT01614197 and NCT01184885).

6-Chimeric antigen receptor (CAR) T cells
Chimeric antigen receptor-modified (CAR) T cells are genetically
engineered T cells that express the antigen-binding domain of an
immunoglobulin linked via transmembrane domains to the
intracellular T-cell receptor signaling moieties.146 This allows the
T cells to recognize unprocessed antigens and to be activated in a
major histocompatibility complex (MHC)-independent manner.
First generation CAR-Ts contain intracellular signaling moieties
derived only from the T-cell receptor/CD3 complex. In contrast,
second- and third-generation CAR-Ts include co-stimulatory
signals in the CAR gene constructs. More recently, fourth-
generation CAR-Ts have been engineered to include a cytokine-
expressing cassette.
The process of CAR T-cell therapy involves collecting T cells,

introducing the CAR construct, and then an autologous transplant
of the modified T cells back into the patient. Options for gene
delivery methods include viral vectors and RNA-based
methods.147 Using a viral vector has the benefit of inducing
permanent gene expression and thus offering antitumor activity
for as long as the transduced T cells persist. Theoretic risks of this
method include malignant transformation of the engineered
T cells if the CAR construct is inserted in such a way that it
deregulates the expression of an oncogene.148 Another method of
gene delivery involves direct transfer of an mRNA construct
through electroporation.149 As no DNA is inserted into the
genome of the T-cell, this eliminates the risk of malignant
transformation. Given the high replicative potential of these
T cells, this methods also offers the advantage of a profound
antitumor response.150 However, the effects of direct mRNA
insertion are transient and antitumor activity rarely persists
beyond 7 days. Preclinical studies have suggested a role for
RNA-based methods with multiple infusions; however, all current
clinical trials utilize a viral vector to deliver the CAR construct.150

As mentioned above, CD19 is an ideal target for immunother-
apy against B-cell ALL due to its near universal expression on
B-lymphoblasts. In a pilot study at the Children’s Hospital of
Philadelphia, Grupp et al.151 treated 53 children with relapsed/
refractory ALL with lymphocyte depleting chemotherapy followed
by CD19-directed CAR-Ts. A CR was observed in 50 patients (94%),
with a 12-month EFS rate of 45% (95% CI, 31–66%) and OS rate of
78% (95% CI, 67–91%). The CAR-Ts were persistent at 6 months in
68% of the patients. Nearly all of the patients developed cytokine
release syndrome (CRS). The 15 patients in which CRS was severe
were effectively treated with the anti-IL-6-receptor antibody,
tocilizumab.152 Important causes of treatment failure included
the loss of circulating CAR-Ts and the expansion of a CD19-
negative clone. CAR-Ts have also shown activity in adults with
relapsed/refractory B-ALL. Davila et al.153 treated 16 adults at
Memorial Sloan Kettering Cancer Center (MSKCC) with condition-
ing chemotherapy followed by CD19-directed CAR T-cell infusion.
CR was observed in 88% of patients, with a 1–3 month persistence
of CAR-Ts. Lee et al.154 reported a 66.7%% CR rate in a National
Cancer Institute (NCI) intent-to-treat analysis of 20 children and
young adults with ALL, with a median CAR-T persistence of
68 days. These data suggest a role for CAR-Ts in the treatment of
relapsed/refractory ALL as a bridge to Allo-SCT or to produce
durable remission. Limitations include the expansion of CD19-
negative clones, the lack of long-term persistence of CAR-Ts after a
single infusion, and the risk of CRS. Studies are ongoing to identify
factors associated with the development of severe CRS and
predict patients that would benefit from pretreatment.155,156
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Recently, the application of CAR-T cells has been expanded to
CD22-positive B-ALL. Early preclinical studies have showed
antitumor activity of CD22-directed CAR-Ts in in vitro and in vivo
models that approximates that of CD19-directed CAR-Ts.157 Based
on these findings, phase 1 trials using CD22-directed CAR-Ts are in
the recruiting stages (NCT02650414). Preliminary results of nine
patients have demonstrated that therapy is well tolerated and
produced a sustained remission at 3 months in all three patients
treated with a dose level of 1 × 106 transduced T cells/kg.158

HEMATOPOIETIC STEM CELL TRANSPLANTATION
After achieving complete response, treatment options include
consolidation and maintenance chemotherapy or Allo-SCT for
eligible patients. For high-risk patients and patients with relapsed/
refractory disease, Allo-SCT has long been considered the
standard of care and best chance for a durable response. While
criteria differ between studies, in general high-risk disease is
defined as Ph-positive ALL, elevated WBC count, CNS disease,
high-risk gene rearrangements, or hypodiploidy. The LALA-94 and
City of Hope and Stanford University series have shown a benefit
of Allo-SCT over standard chemotherapy in these high-risk
patients.49,159,160 It is therefore recommended that all high-risk
young adults with an available donor undergo Allo-SCT during
their first CR (CR1). Recent studies have suggested that patients
with ETP-ALL and Ph-like ALL be treated as high-risk and be
offered Allo-SCT during CR1 as well.161,162 The role of Allo-SCT in
standard-risk adults is less clearly defined. In general, MRD
has emerged as a prognostic marker that can restratify
patients to high-risk, making them candidates for Allo-SCT.
Studies32 found that MRD-positivity is an independent risk factor
for decreased relapse-free and overall survival. Subsequently,
other studies163 evaluated the risk factors in patients treated with
Allo-SCT versus standard chemotherapy after CR1. In patients with
positive MRD, Allo-SCT was associated with improved relapse-free
survival. However, in patients with a complete MRD response,
there was no survival benefit to Allo-SCT over standard
chemotherapy.163

Allo-SCT also should be considered in all patients that
relapse, optimally after achieving a second CR (CR2). The
LALA-94 trial showed a 5-year OS of 33% in patients who were
able to undergo Allo-SCT during CR2 compared to 8% in patients
who underwent Allo-SCT during active relapse.164 Patients who
are unable to achieve CR2 by conventional methods should be
considered for clinical trials with novel agents as a bridge to Allo-
SCT. In the MRC/ECOG 2993 study, 5-year survival was highest in
the group receiving a sibling donor Allo-SCT compared to
unmatched donor or chemotherapy alone (23%, 16% and 4%,
respectively).165

CONCLUSION
Acute lymphoblastic leukemia has been touted as a major success
story in pediatric oncology through the implementation of dose-
intensification chemotherapy and Allo-SCT. However, due to high-
risk disease characteristics and significant toxicity associated with
chemotherapy in adults, outcomes are far less encouraging. There
remains much uncertainty about how best to treat adults with
ALL, as some studies have shown benefit of pediatric-inspired
regimens. However, not all adults are able to tolerate such dose
intensification and the exact subset of patients who are likely to
benefit has not clearly been defined. Furthermore, elderly patients
are particularly susceptible to the dose-limiting toxicities of these
agents and are often excluded from Allo-SCT on the basis of
performance status and medical comorbidities. Novel targeted
therapies offer the promise of effective anti-leukemic activity with
reduced toxicity from off-target effects. Given the diverse
molecular and genetic alterations occurring in ALL, it is unlikely

that a single agent will be effective for all patients with ALL.
However, with the ability to characterize the immunopheno-
type and genotype of each patient’s leukemia, targeted therapy
can be expected to lead to improvements in remission and
survival as part of individualized treatment strategies. The
successes from tyrosine kinase inhibition in CML have been
translated to Ph-positive ALL, and second and third genera-
tion TKIs are being studied for use in high-risk Ph-like disease.
Other signaling pathways, such as PI3K/AKT/mTOR pathway,
are also promising targets for small molecule inhibition. In
addition to targeting intracellular pathways, monoclonal anti-
bodies recognize cell surface antigens. Immunoconjugates, such
as inotuzumab ozogamicin, bind to leukemic cells, are internalized
and release a cytotoxin that kills the leukemic cell; whereas dual-
specific antibodies, such as blinatumumab, cause the direct
activation of T cells against blasts. CAR-Ts involve a similar
mechanism, in which a patient’s own T cells are genetically
programmed to recognize leukemic cells, inducing an anti-
leukemic immune response. Finally, existing agents, such as
bortezomib, decitabine and ruxolitinib that are well tolerated in
the treatment of various malignancies are now being studied for
application in ALL. As the role of these novel agents is further
defined and integrated into new treatment strategies, adult ALL
may follow pediatric ALL as a major success story in the near
future.
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