Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Concepts in the design and engineering of single-molecule electronic devices

Abstract

Over the past two decades, various techniques for fabricating nano-gapped electrodes have emerged, promoting rapid development in the field of single-molecule electronics, on both the experimental and theoretical sides. To investigate intrinsic quantum phenomena and achieve desired functionalities, it is important to fully understand the charge transport characteristics of single-molecule devices. In this Review, we present the principles that have been developed for fabricating reliable molecular junctions and tuning their intrinsic properties from an engineering perspective. Through holistic consideration of the device structure, we divide single-molecule junctions into three intercorrelated components: the electrode, the contact (spacer–linker) interface and the molecular backbone or functional centre. We systematically discuss the selection of the electrode material and the design of the molecular components from the point of view of the materials, the interface and molecular engineering. The influence of the properties of these elements on the molecule–electrode interface coupling and on the relative energy gap between the Fermi level of the electrode and the orbital energy levels of the molecule, which directly influence the charge transport behaviour of single-molecule devices, is also a focus of our analysis. On the basis of these considerations, we examine various functionalities demonstrated in molecular junctions through molecular design and engineering.

Key points

  • Single-molecule electronics has become a burgeoning subfield of nanoscience and has begun to develop beyond the basic description of carrier transport, expanding in different research directions.

  • A single-molecule junction can be divided into three intercorrelated components: the electrode, the contact interface and the molecular backbone or functional centre.

  • Both the mechanical stability and electronic coupling of the molecule–electrode interface increase with the binding energy of the electrode–anchoring moiety interaction. A compromise between these factors can be achieved by inserting suitable spacers between the molecular kernel and anchoring groups.

  • To select suitable electrode materials, chemical inertness to air, good processability, suitable work function and good compatibility with molecules should be taken into consideration.

  • The structures of molecular bridges can be tuned by the molecular length, the geometry of the main chains, the responsivity of the functional centres and the types of side groups, offering opportunities to probe intrinsic physical properties and realize various functionalities.

  • Challenges in the field of single-molecule electronics include improving device-to-device uniformity, stability, integration capability and accuracy of theoretical models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of single-molecule junctions.
Fig. 2: Strategies to control interface coupling.
Fig. 3: Single-molecule diodes.
Fig. 4: Typical spin-based switches.
Fig. 5: Switches based on destructive quantum interference.
Fig. 6: Use of substituents to tune the conductance in single-molecule junctions.
Fig. 7: Single-molecule dynamic detection of intermolecular reactions or interactions.
Fig. 8: Single-molecule dynamic detection of chemical reactions.

Similar content being viewed by others

References

  1. Waldrop, M. M. The chips are down for Moore’s law. Nature 530, 144–147 (2016).

    Article  ADS  Google Scholar 

  2. Semiconductor Industry Association. 2015 International Technology Roadmap for Semiconductors (ITRS) (Semiconductor Industry Association, 2015).

  3. Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    Article  ADS  Google Scholar 

  4. Xiang, D., Wang, X., Jia, C., Lee, T. & Guo, X. Molecular–scale electronics: from concept to function. Chem. Rev. 116, 4318–4440 (2016).

    Article  Google Scholar 

  5. Metzger, R. M. Unimolecular electronics. Chem. Rev. 115, 5056–5115 (2015).

    Article  Google Scholar 

  6. Su, T. A., Neupane, M., Steigerwald, M. L., Venkataraman, L. & Nuckolls, C. Chemical principles of single–molecule electronics. Nat. Rev. Mater. 1, 16002 (2016).

    Article  ADS  Google Scholar 

  7. Sun, L. et al. Single–molecule electronics: from chemical design to functional devices. Chem. Soc. Rev. 43, 7378–7411 (2014).

    Article  Google Scholar 

  8. Amdursky, N. et al. Electronic transport via proteins. Adv. Mater. 26, 7142–7161 (2014).

    Article  Google Scholar 

  9. Vilan, A., Aswal, D. & Cahen, D. Large–area, ensemble molecular electronics: motivation and challenges. Chem. Rev. 117, 4248–4286 (2017).

    Article  Google Scholar 

  10. Li, T., Hu, W. & Zhu, D. Nanogap electrodes. Adv. Mater. 22, 286–300 (2010).

    Article  Google Scholar 

  11. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997).

    Article  Google Scholar 

  12. Xiang, D., Jeong, H., Lee, T. & Mayer, D. Mechanically controllable break junctions for molecular electronics. Adv. Mater. 25, 4845–4867 (2013).

    Article  Google Scholar 

  13. Huang, C., Rudnev, A. V., Hong, W. & Wandlowski, T. Break junction under electrochemical gating: testbed for single–molecule electronics. Chem. Soc. Rev. 44, 889–901 (2015).

    Article  Google Scholar 

  14. Cui, X. D. et al. Reproducible measurement of single–molecule conductivity. Science 294, 571–574 (2001).

    Article  ADS  Google Scholar 

  15. Ho Choi, S., Kim, B. & Frisbie, C. D. Electrical resistance of long conjugated molecular wires. Science 320, 1482–1486 (2008).

    Article  ADS  Google Scholar 

  16. Park, J. et al. Coulomb blockade and the Kondo effect in single–atom transistors. Nature 417, 722–725 (2002).

    Article  ADS  Google Scholar 

  17. Liang, W., Shores, M. P., Bockrath, M., Long, J. R. & Park, H. Kondo resonance in a single–molecule transistor. Nature 417, 725–729 (2002).

    Article  ADS  Google Scholar 

  18. Xu, B. & Tao, N. J. Measurement of single–molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    Article  ADS  Google Scholar 

  19. Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single–molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).

    Article  ADS  Google Scholar 

  20. Qin, L., Park, S., Huang, L. & Mirkin, C. A. On–wire lithography. Science 309, 113–115 (2005).

    Article  ADS  Google Scholar 

  21. Guo, X. et al. Covalently bridging gaps in single–walled carbon nanotubes with conducting molecules. Science 311, 356–359 (2006).

    Article  ADS  Google Scholar 

  22. Cao, Y. et al. Building high–throughput molecular junctions using indented graphene point contacts. Angew. Chem. Int. Ed. 51, 12228–12232 (2012).

    Article  Google Scholar 

  23. Tang, J. et al. Encoding molecular–wire formation within nanoscale sockets. Angew. Chem. Int. Ed. 119, 3966–3969 (2007).

    Article  Google Scholar 

  24. Kubatkin, S. et al. Single–electron transistor of a single organic molecule with access to several redox states. Nature 425, 698–701 (2003).

    Article  ADS  Google Scholar 

  25. Rampi, M. A., Schueller, O. J. A. & Whitesides, G. M. Alkanethiol self–assembled monolayers as the dielectric of capacitors with nanoscale thickness. Appl. Phys. Lett. 72, 1781–1783 (1998).

    Article  ADS  Google Scholar 

  26. Rampi, M. A. & Whitesides, G. M. A versatile experimental approach for understanding electron transport through organic materials. Chem. Phys. 281, 373–391 (2002).

    Article  Google Scholar 

  27. Akkerman, H. B., Blom, P. W., de Leeuw, D. M. & de Boer, B. Towards molecular electronics with large–area molecular junctions. Nature 441, 69–72 (2006).

    Article  ADS  Google Scholar 

  28. Tao, N. J. Electron transport in molecular junctions. Nat. Nanotechnol. 1, 173–181 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  29. Aradhya, S. V. & Venkataraman, L. Single–molecule junctions beyond electronic transport. Nat. Nanotechnol. 8, 399–410 (2013).

    Article  ADS  Google Scholar 

  30. Moth–Poulsen, K. & Bjornholm, T. Molecular electronics with single molecules in solid–state devices. Nat. Nanotechnol. 4, 551–556 (2009).

    Article  ADS  Google Scholar 

  31. Lindsay, S. M. & Ratner, M. A. Molecular transport junctions: clearing mists. Adv. Mater. 19, 23–31 (2007).

    Article  Google Scholar 

  32. Lambert, C. J. Basic concepts of quantum interference and electron transport in single–molecule electronics. Chem. Soc. Rev. 44, 875–888 (2015).

    Article  Google Scholar 

  33. Guedon, C. M. et al. Observation of quantum interference in molecular charge transport. Nat. Nanotechnol. 7, 305–309 (2012).

    Article  ADS  Google Scholar 

  34. Ballmann, S. et al. Experimental evidence for quantum interference and vibrationally induced decoherence in single–molecule junctions. Phys. Rev. Lett. 109, 056801 (2012).

    Article  ADS  Google Scholar 

  35. Jia, C. et al. Covalently bonded single–molecule junctions with stable and reversible photoswitched conductivity. Science 352, 1443–1445 (2016).

    Article  ADS  Google Scholar 

  36. Liu, Z., Ren, S. & Guo, X. Switching effects in molecular electronic devices. Top. Curr. Chem. 375, 56 (2017).

    Article  Google Scholar 

  37. Collier, C. P. A [2]Catenane–based solid state electronically reconfigurable switch. Science 289, 1172–1175 (2000).

    Article  ADS  Google Scholar 

  38. Zhang, J. L. et al. Towards single molecule switches. Chem. Soc. Rev. 44, 2998–3022 (2015).

    Article  Google Scholar 

  39. Reddy, P., Jang, S. Y., Segalman, R. A. & Majumdar, A. Thermoelectricity in molecular junctions. Science 315, 1568–1571 (2007).

    Article  ADS  Google Scholar 

  40. Nozaki, D., Avdoshenko, S. M., Sevincli, H. & Cuniberti, G. Quantum interference in thermoelectric molecular junctions: a toy model perspective. J. Appl. Phys. 116, 074308 (2014).

    Article  ADS  Google Scholar 

  41. Elbing, M. et al. A single–molecule diode. Proc. Natl Acad. Sci. USA 102, 8815–8820 (2005).

    Article  ADS  Google Scholar 

  42. Kim, W. Y. & Kim, K. S. Tuning molecular orbitals in molecular electronics and spintronics. Acc. Chem. Res. 43, 111–120 (2010).

    Article  Google Scholar 

  43. Sanvito, S. Molecular spintronics. Chem. Soc. Rev. 40, 3336–3355 (2011).

    Article  Google Scholar 

  44. Guo, X. Single–molecule electrical biosensors based on single–walled carbon nanotubes. Adv. Mater. 25, 3397–3408 (2013).

    Article  Google Scholar 

  45. Zhao, Y. et al. Single–molecule spectroscopy of amino acids and peptides by recognition tunnelling. Nat. Nanotechnol. 9, 466–473 (2014).

    Article  ADS  Google Scholar 

  46. Wang, J. et al. Point decoration of silicon nanowires: an approach toward single–molecule electrical detection. Angew. Chem. Int. Ed. 53, 5038–5043 (2014).

    Google Scholar 

  47. He, G., Li, J., Ci, H., Qi, C. & Guo, X. Direct measurement of single–molecule DNA hybridization dynamics with single–base resolution. Angew. Chem. Int. Ed. 55, 9036–9040 (2016).

    Article  Google Scholar 

  48. Zhang, J. et al. Single–molecule electron transfer in electrochemical environments. Chem. Rev. 108, 2737–2791 (2008).

    Article  Google Scholar 

  49. Shen, Q., Guo, X., Steigerwald, M. L. & Nuckolls, C. Integrating reaction chemistry into molecular electronic devices. Chem. Asian J. 5, 1040–1057 (2010).

    Article  Google Scholar 

  50. Perrin, M. L., Burzuri, E. & van der Zant, H. S. Single–molecule transistors. Chem. Soc. Rev. 44, 902–919 (2015).

    Article  Google Scholar 

  51. Jia, C., Ma, B., Xin, N. & Guo, X. Carbon electrode–molecule junctions: a reliable platform for molecular electronics. Acc. Chem. Res. 48, 2565–2575 (2015).

    Article  Google Scholar 

  52. Su, T. A. et al. Silane and germane molecular electronics. Acc. Chem. Res. 50, 1088–1095 (2017).

    Article  Google Scholar 

  53. Cuevas, J. C. & Scheer, E. Molecular Electronics: an Introduction to Theory and Experiment Vol. 15 (World Scientific, 2017).

  54. Landauer, R. Spatial variation of currents and fields due to localizaed scatterers in metallic conducation. IBM J. Res. Dev. 1, 223–231 (1957).

    Article  Google Scholar 

  55. Büttiker, M., Imry, Y., Landauer, R. & Pinhas, S. Generalized many–channel conductance formula with application to small rings. Phys. Rev. B 31, 6207–6215 (1985).

    Article  ADS  Google Scholar 

  56. Eränen, S. & Sinkkonen, J. Generalization of the Landauer conductance formula. Phys. Rev. B 35, 2222–2227 (1987).

    Article  ADS  Google Scholar 

  57. Nitzan, A. Electron transmission through molecules and molecular interfaces. Annu. Rev. Phys. Chem. 52, 681–750 (2001).

    Article  ADS  Google Scholar 

  58. Xue, Y. & Ratner, M. A. Microscopic study of electrical transport through individual molecules with metallic contacts. II. Effect of the interface structure. Phys. Rev. B 68, 115407 (2003).

    Article  ADS  Google Scholar 

  59. Yelin, T. et al. Conductance saturation in a series of highly transmitting molecular junctions. Nat. Mater. 15, 444–449 (2016).

    Article  ADS  Google Scholar 

  60. Jia, C. et al. Conductance switching and mechanisms in single–molecule junctions. Angew. Chem. Int. Ed. 52, 8666–8670 (2013).

    Article  Google Scholar 

  61. Dulić, D. et al. One–way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91, 207402 (2003).

    Article  ADS  Google Scholar 

  62. Whalley, A. C., Steigerwald, M. L., Guo, X. & Nuckolls, C. Reversible switching in molecular electronic devices. J. Am. Chem. Soc. 129, 12590–12591 (2007).

    Article  Google Scholar 

  63. Frisbie, C. D. Designing a robust single–molecule switch. Science 352, 1394–1395 (2016).

    Article  ADS  Google Scholar 

  64. Jia, C. & Guo, X. Molecule–electrode interfaces in molecular electronic devices. Chem. Soc. Rev. 42, 5642–5660 (2013).

    Article  Google Scholar 

  65. Bruot, C., Hihath, J. & Tao, N. Mechanically controlled molecular orbital alignment in single molecule junctions. Nat. Nanotechnol. 7, 35–40 (2011).

    Article  ADS  Google Scholar 

  66. Kim, T. et al. Determination of energy level alignment and coupling strength in 4,4’–bipyridine single–molecule junctions. Nano Lett. 14, 794–798 (2014).

    Article  ADS  Google Scholar 

  67. Thygesen, K. S. & Rubio, A. Renormalization of molecular quasiparticle levels at metal–molecule interfaces: trends across binding regimes. Phys. Rev. Lett. 102, 046802 (2009).

    Article  ADS  Google Scholar 

  68. Perrin, M. L. et al. Large tunable image–charge effects in single–molecule junctions. Nat. Nanotechnol. 8, 282–287 (2013).

    Article  ADS  Google Scholar 

  69. Kaasbjerg, K. & Flensberg, K. Strong polarization–induced reduction of addition energies in single–molecule nanojunctions. Nano Lett. 8, 3809–3814 (2008).

    Article  ADS  Google Scholar 

  70. Park, Y. S. et al. Contact chemistry and single–molecule conductance: a comparison of phosphines, methyl sulfides, and amines. J. Am. Chem. Soc. 129, 15768–15769 (2007).

    Article  Google Scholar 

  71. Arroyo, C. R. et al. Influence of binding groups on molecular junction formation. J. Am. Chem. Soc. 133, 14313–14319 (2011).

    Article  Google Scholar 

  72. Li, H. et al. Electric field breakdown in single molecule junctions. J. Am. Chem. Soc. 137, 5028–5033 (2015).

    Article  Google Scholar 

  73. Moreno–Garcia, P. et al. Single–molecule conductance of functionalized oligoynes: length dependence and junction evolution. J. Am. Chem. Soc. 135, 12228–12240 (2013).

    Article  Google Scholar 

  74. Tsutsui, M., Taniguchi, M. & Kawai, T. Quantitative evaluation of metal–molecule contact stability at the single–molecule level. J. Am. Chem. Soc. 131, 10552–10556 (2009).

    Article  Google Scholar 

  75. Hong, W. et al. Single molecular conductance of tolanes: experimental and theoretical study on the junction evolution dependent on the anchoring group. J. Am. Chem. Soc. 134, 2292–2304 (2012).

    Article  Google Scholar 

  76. Schwarz, F. et al. High–conductive organometallic molecular wires with delocalized electron systems strongly coupled to metal electrodes. Nano Lett. 14, 5932–5940 (2014).

    Article  ADS  Google Scholar 

  77. Ponce, J. et al. Effect of metal complexation on the conductance of single–molecular wires measured at room temperature. J. Am. Chem. Soc. 136, 8314–8322 (2014).

    Article  Google Scholar 

  78. Hong, W. et al. Trimethylsilyl–terminated oligo(phenylene ethynylene)s: an approach to single–molecule junctions with covalent Au–C sigma–bonds. J. Am. Chem. Soc. 134, 19425–19431 (2012).

    Article  Google Scholar 

  79. Lissel, F. et al. Organometallic single–molecule electronics: tuning electron transport through X(diphosphine)2FeC4Fe(diphosphine)2X building blocks by varying the Fe–X–Au anchoring scheme from coordinative to covalent. J. Am. Chem. Soc. 136, 14560–14569 (2014).

    Article  Google Scholar 

  80. Martin, C. A. et al. Fullerene–based anchoring groups for molecular electronics. J. Am. Chem. Soc. 130, 13198–13199 (2008).

    Article  Google Scholar 

  81. Leary, E. et al. Unambiguous one–molecule conductance measurements under ambient conditions. Nano Lett. 11, 2236–2241 (2011).

    Article  ADS  Google Scholar 

  82. Meisner, J. S. et al. Importance of direct metal–pi coupling in electronic transport through conjugated single–molecule junctions. J. Am. Chem. Soc. 134, 20440–20445 (2012).

    Article  Google Scholar 

  83. Kiguchi, M. et al. Single molecular resistive switch obtained via sliding multiple anchoring points and varying effective wire length. J. Am. Chem. Soc. 136, 7327–7332 (2014).

    Article  Google Scholar 

  84. Quek, S. Y. et al. Mechanically controlled binary conductance switching of a single–molecule junction. Nat. Nanotechnol. 4, 230–234 (2009).

    Article  ADS  Google Scholar 

  85. Kamenetska, M. et al. Conductance and geometry of pyridine–linked single–molecule junctions. J. Am. Chem. Soc. 132, 6817–6821 (2010).

    Article  Google Scholar 

  86. Venkataraman, L. et al. Single–molecule circuits with well–defined molecular conductance. Nano Lett. 6, 458–462 (2006).

    Article  ADS  Google Scholar 

  87. Quek, S. Y. et al. Amine–gold linked single–molecule circuits: experiment and theory. Nano Lett. 7, 3477–3482 (2007).

    Article  ADS  Google Scholar 

  88. Rascon–Ramos, H., Artes, J. M., Li, Y. & Hihath, J. Binding configurations and intramolecular strain in single–molecule devices. Nat. Mater. 14, 517–522 (2015).

    Article  ADS  Google Scholar 

  89. Mishchenko, A. et al. Single–molecule junctions based on nitrile–terminated biphenyls: a promising new anchoring group. J. Am. Chem. Soc. 133, 184–187 (2011).

    Article  Google Scholar 

  90. Frei, M., Aradhya, S. V., Hybertsen, M. S. & Venkataraman, L. Linker dependent bond rupture force measurements in single–molecule junctions. J. Am. Chem. Soc. 134, 4003–4006 (2012).

    Article  Google Scholar 

  91. Ie, Y. et al. Nature of electron transport by pyridine–based tripodal anchors: potential for robust and conductive single–molecule junctions with gold electrodes. J. Am. Chem. Soc. 133, 3014–3022 (2011).

    Article  Google Scholar 

  92. Kim, N. T., Li, H., Venkataraman, L. & Leighton, J. L. High–conductance pathways in ring–strained disilanes by way of direct sigma–Si–Si to Au coordination. J. Am. Chem. Soc. 138, 11505–11508 (2016).

    Article  Google Scholar 

  93. Gerhard, L. et al. An electrically actuated molecular toggle switch. Nat. Commun. 8, 14672 (2017).

    Article  ADS  Google Scholar 

  94. Li, Z. et al. Regulating a benzodifuran single molecule redox switch via electrochemical gating and optimization of molecule/electrode coupling. J. Am. Chem. Soc. 136, 8867–8870 (2014).

    Article  Google Scholar 

  95. Xing, Y. et al. Optimizing single–molecule conductivity of conjugated organic oligomers with carbodithioate linkers. J. Am. Chem. Soc. 132, 7946–7956 (2010).

    Article  Google Scholar 

  96. von Wrochem, F. et al. Efficient electronic coupling and improved stability with dithiocarbamate–based molecular junctions. Nat. Nanotechnol. 5, 618–624 (2010).

    Article  ADS  Google Scholar 

  97. Hong, Z. –W. et al. Quantum interference effect of single–molecule conductance influenced by insertion of different alkyl length. Electrochem. Commun. 68, 86–89 (2016).

    Article  Google Scholar 

  98. Bagrets, A., Arnold, A. & Evers, F. Conduction properties of bipyridinium–functionalized molecular wires. J. Am. Chem. Soc. 130, 9013–9018 (2008).

    Article  Google Scholar 

  99. Adak, O., Korytár, R., Joe, A. Y., Evers, F. & Venkataraman, L. Impact of electrode density of states on transport through pyridine-linked single-molecule junctions. Nano Lett. 15, 3716–3722 (2015).

    Article  ADS  Google Scholar 

  100. Li, H. et al. Silver makes better electrical contacts to thiol–terminated silanes than gold. Angew. Chem. Int. Ed. 56, 14145–14148 (2017).

    Article  ADS  Google Scholar 

  101. Ko, C. H., Huang, M. J., Fu, M. D. & Chen, C. H. Superior contact for single–molecule conductance: electronic coupling of thiolate and isothiocyanate on Pt, Pd, and Au. J. Am. Chem. Soc. 132, 756–764 (2010).

    Article  Google Scholar 

  102. Bonifas, A. P. & McCreery, R. L. ‘Soft’ Au, Pt and Cu contacts for molecular junctions through surface–diffusion–mediated deposition. Nat. Nanotechnol. 5, 612–617 (2010).

    Article  ADS  Google Scholar 

  103. Li, Y. et al. Atomic and electronic structures of a single oxygen molecular junction with Au, Ag, and Cu electrodes. J. Phys. Chem. C. 120, 16254–16258 (2016).

    Article  Google Scholar 

  104. Li, Y., Kaneko, S., Fujii, S. & Kiguchi, M. Symmetry of single hydrogen molecular junction with Au, Ag, and Cu electrodes. J. Phys. Chem. C. 119, 19143–19148 (2015).

    Article  Google Scholar 

  105. Yoshida, K. et al. Gate–tunable large negative tunnel magnetoresistance in Ni–C60–Ni single molecule transistors. Nano Lett. 13, 481–485 (2013).

    Article  ADS  Google Scholar 

  106. Rakhmilevitch, D., Sarkar, S., Bitton, O., Kronik, L. & Tal, O. Enhanced magnetoresistance in molecular junctions by geometrical optimization of spin–selective orbital hybridization. Nano Lett. 16, 1741–1745 (2016).

    Article  ADS  Google Scholar 

  107. Brooke, R. J. et al. Single–molecule electrochemical transistor utilizing a nickel–pyridyl spinterface. Nano Lett. 15, 275–280 (2015).

    Article  ADS  Google Scholar 

  108. Li, J. J. et al. Giant single–molecule anisotropic magnetoresistance at room temperature. J. Am. Chem. Soc. 137, 5923–5929 (2015).

    Article  Google Scholar 

  109. Scott, G. D. & Hu, T. C. Gate–controlled Kondo effect in a single–molecule transistor with elliptical ferromagnetic leads. Phys. Rev. B 96, 144416 (2017).

    Article  ADS  Google Scholar 

  110. Lortscher, E. Wiring molecules into circuits. Nat. Nanotechnol. 8, 381–384 (2013).

    Article  ADS  Google Scholar 

  111. Prins, F. et al. Room–temperature gating of molecular junctions using few–layer graphene nanogap electrodes. Nano Lett. 11, 4607–4611 (2011).

    Article  ADS  Google Scholar 

  112. Xu, Q. et al. Single electron transistor with single aromatic ring molecule covalently connected to graphene nanogaps. Nano Lett. 17, 5335–5341 (2017).

    Article  ADS  Google Scholar 

  113. Mol, J. A. et al. Graphene–porphyrin single–molecule transistors. Nanoscale 7, 13181–13185 (2015).

    Article  ADS  Google Scholar 

  114. Cao, Y., Dong, S., Liu, S., Liu, Z. & Guo, X. Toward functional molecular devices based on graphene–molecule junctions. Angew. Chem. Int. Ed. 52, 3906–3910 (2013).

    Article  Google Scholar 

  115. Aragones, A. C. et al. Single–molecule electrical contacts on silicon electrodes under ambient conditions. Nat. Commun. 8, 15056 (2017).

    Article  ADS  Google Scholar 

  116. Vezzoli, A. et al. Single–molecule transport at a rectifying GaAs contact. Nano Lett. 17, 1109–1115 (2017).

    Article  ADS  Google Scholar 

  117. Vezzoli, A., Brooke, R. J., Higgins, S. J., Schwarzacher, W. & Nichols, R. J. Single–molecule photocurrent at a metal–molecule–semiconductor junction. Nano Lett. 17, 6702–6707 (2017).

    Article  ADS  Google Scholar 

  118. Capozzi, B. et al. Single–molecule diodes with high rectification ratios through environmental control. Nat. Nanotechnol. 10, 522–527 (2015).

    Article  ADS  Google Scholar 

  119. Kim, T., Liu, Z. F., Lee, C., Neaton, J. B. & Venkataraman, L. Charge transport and rectification in molecular junctions formed with carbon–based electrodes. Proc. Natl Acad. Sci. USA 111, 10928–10932 (2014).

    Article  ADS  Google Scholar 

  120. Zhang, Q. et al. Graphene as a promising electrode for low–current attenuation in nonsymmetric molecular junctions. Nano Lett. 16, 6534–6540 (2016).

    Article  ADS  Google Scholar 

  121. Warner, B. et al. Tunable magnetoresistance in an asymmetrically coupled single–molecule junction. Nat. Nanotechnol. 10, 259–263 (2015).

    Article  ADS  Google Scholar 

  122. Bagrets, A. et al. Single molecule magnetoresistance with combined antiferromagnetic and ferromagnetic electrodes. Nano Lett. 12, 5131–5136 (2012).

    Article  ADS  Google Scholar 

  123. Derosa, P. A., Guda, S. & Seminario, J. M. A programmable molecular diode driven by charge–induced conformational changes. J. Am. Chem. Soc. 125, 14240–14241 (2003).

    Article  Google Scholar 

  124. Batra, A. et al. Tuning rectification in single–molecular diodes. Nano Lett. 13, 6233–6237 (2013).

    Article  ADS  Google Scholar 

  125. Zhang, N., Lo, W. Y., Cai, Z., Li, L. & Yu, L. Molecular rectification tuned by through–space gating effect. Nano Lett. 17, 308–312 (2017).

    Article  ADS  Google Scholar 

  126. Perrin, M. L. et al. Single–molecule resonant tunneling diode. J. Phys. Chem. C. 119, 5697–5702 (2015).

    Article  Google Scholar 

  127. Díez–Pérez, I. et al. Rectification and stability of a single molecular diode with controlled orientation. Nat. Chem. 1, 635–641 (2009).

    Article  Google Scholar 

  128. Lörtscher, E. et al. Transport properties of a single–molecule diode. ACS Nano 6, 4931–4939 (2012).

    Article  Google Scholar 

  129. McConnell, H. M. Intramolecular charge transfer in aromatic free radicals. J. Chem. Phys. 35, 508–515 (1961).

    Article  ADS  Google Scholar 

  130. Segal, D. & Nitzan, A. Theoretical study of long–range electron transport in molecular junctions. J. Phys. Chem. B 104, 3817–3829 (2000).

    Article  Google Scholar 

  131. Berlin, Y. A., Hutchison, G. R., Rempala, P., Ratner, M. A. & Michl, J. Charge hopping in molecular wires as a sequence of electron–ttransfer reactions. J. Phys. Chem. A 107, 3970–3980 (2003).

    Article  Google Scholar 

  132. Park, Y. S. et al. Interface–contact chemistry and single–molecule conductance: a comparison of phosphines, methyl sulfides, and amines. J. Am. Chem. Soc. 129, 15768–15768 (2007).

    Article  Google Scholar 

  133. Xing, Y. et al. Optimizing single–molecule conductivity of conjugated organic oligomers with carbodithioate linkers. J. Am. Chem. Soc. 132, 7946–7956 (2010).

    Article  Google Scholar 

  134. Luo, L. et al. Length and temperature dependent conduction of ruthenium–containing redox–active molecular wires. J. Phys. Chem. C. 115, 19955–19961 (2011).

    Article  Google Scholar 

  135. Milan, D. C. et al. Solvent dependence of the single molecule conductance of oligoyne–based molecular wires. J. Phys. Chem. C. 120, 15666–15674 (2015).

    Article  ADS  Google Scholar 

  136. Malen, J. A. et al. Identifying the length dependence of orbital alignment and contact coupling in molecular heterojunctions. Nano Lett. 9, 1164–1169 (2009).

    Article  ADS  Google Scholar 

  137. He, J. et al. Electronic decay constant of carotenoid polyenes from single–molecule measurements. J. Am. Chem. Soc. 127, 1384–1385 (2005).

    Article  Google Scholar 

  138. Widawsky, J. R. et al. Length–dependent thermopower of highly conducting Au–C bonded single molecule junctions. Nano Lett. 13, 2889–2894 (2013).

    Article  ADS  Google Scholar 

  139. Tan, A. et al. Effect of length and contact chemistry on the electronic structure and thermoelectric properties of molecular junctions. J. Am. Chem. Soc. 133, 8838–8841 (2011).

    Article  Google Scholar 

  140. Capozzi, B. et al. Length–dependent conductance of oligothiophenes. J. Am. Chem. Soc. 136, 10486–10492 (2014).

    Article  Google Scholar 

  141. Yamada, R., Kumazawa, H., Noutoshi, T., Tanaka, S. & Tada, H. Electrical conductance of oligothiophene molecular wires. Nano Lett. 8, 1237–1240 (2008).

    Article  ADS  Google Scholar 

  142. Dell, E. J., Capozzi, B., Xia, J., Venkataraman, L. & Campos, L. M. Molecular length dictates the nature of charge carriers in single–molecule junctions of oxidized oligothiophenes. Nat. Chem. 7, 209–214 (2015).

    Article  Google Scholar 

  143. Li, Z., Park, T. H., Rawson, J., Therien, M. J. & Borguet, E. Quasi–ohmic single molecule charge transport through highly conjugated meso–to–meso ethyne–bridged porphyrin wires. Nano Lett. 12, 2722–2727 (2012).

    Article  ADS  Google Scholar 

  144. Sedghi, G. et al. Long–range electron tunnelling in oligo–porphyrin molecular wires. Nat. Nanotechnol. 6, 517–523 (2011).

    Article  ADS  Google Scholar 

  145. Hines, T. et al. Transition from tunneling to hopping in single molecular junctions by measuring length and temperature dependence. J. Am. Chem. Soc. 132, 11658–11664 (2010).

    Article  Google Scholar 

  146. Cai, Z. et al. Exceptional single–molecule transport properties of ladder–type heteroacene molecular wires. J. Am. Chem. Soc. 138, 10630–10635 (2016).

    Article  Google Scholar 

  147. Lu, Q. et al. From tunneling to hopping: a comprehensive investigation of charge transport mechanism in molecular junctions based on oligo(p–phenylene ethynylene)s. ACS Nano 3, 3861–3868 (2009).

    Article  Google Scholar 

  148. Ashraf, M. K., Bruque, N. A., Tan, J. L., Beran, G. J. & Lake, R. K. Conductance switching in diarylethenes bridging carbon nanotubes. J. Chem. Phys. 134, 024524 (2011).

    Article  ADS  Google Scholar 

  149. van der Molen, S. J. et al. Light–controlled conductance switching of ordered metal–molecule–metal devices. Nano Lett. 9, 76–80 (2009).

    Article  ADS  Google Scholar 

  150. Irie, M. Diarylethenes for memories and switches. Chem. Rev. 100, 1685–1716 (2000).

    Article  Google Scholar 

  151. Tam, E. S. et al. Single–molecule conductance of pyridine–terminated dithienylethene switch molecules. ACS Nano 5, 5115–5123 (2011).

    Article  Google Scholar 

  152. Kim, Y. et al. Charge transport characteristics of diarylethene photoswitching single–molecule junctions. Nano Lett. 12, 3736–3742 (2012).

    Article  ADS  Google Scholar 

  153. Roldan, D. et al. Charge transport in photoswitchable dimethyldihydropyrene–type single–molecule junctions. J. Am. Chem. Soc. 135, 5974–5977 (2013).

    Article  Google Scholar 

  154. Haiss, W. et al. Redox state dependence of single molecule conductivity. J. Am. Chem. Soc. 125, 15294–15295 (2003).

    Article  Google Scholar 

  155. Tsoi, S. et al. Electrochemically controlled conductance switching in a single molecule: quinone–modified oligo(phenylene vinylene). ACS Nano 2, 1289–1295 (2008).

    Article  Google Scholar 

  156. Pobelov, I. V., Li, Z. H. & Wandlowski, T. Electrolyte gating in redox–active tunneling junctions–an electrochemical STM approach. J. Am. Chem. Soc. 130, 16045–16054 (2008).

    Article  Google Scholar 

  157. Chen, F. et al. A molecular switch based on potential–induced changes of oxidation state. Nano Lett. 5, 503–506 (2005).

    Article  ADS  Google Scholar 

  158. Li, C. et al. Electrochemical gate–controlled electron transport of redox–active single perylene bisimide molecular junctions. J. Phys. Condens. Matter 20, 374122 (2008).

    Article  Google Scholar 

  159. Darwish, N. et al. Observation of electrochemically controlled quantum interference in a single anthraquinone–based norbornylogous bridge molecule. Angew. Chem. Int. Ed. 51, 3203–3206 (2012).

    Article  Google Scholar 

  160. Albrecht, T., Guckian, A., Kuznetsov, A. M., Vos, J. G. & Ulstrup, J. Mechanism of electrochemical charge transport in individual transition metal complexes. J. Am. Chem. Soc. 128, 17132–17138 (2006).

    Article  Google Scholar 

  161. Zhou, X. S. et al. Do molecular conductances correlate with electrochemical rate constants? Experimental insights. J. Am. Chem. Soc. 133, 7509–7516 (2011).

    Article  Google Scholar 

  162. Xiao, X. et al. Redox–gated electron transport in electrically wired ferrocene molecules. Chem. Phys. 326, 138–143 (2006).

    Article  ADS  Google Scholar 

  163. Ricci, A. M., Calvo, E. J., Martin, S. & Nichols, R. J. Electrochemical scanning tunneling spectroscopy of redox–active molecules bound by Au–C bonds. J. Am. Chem. Soc. 132, 2494–2495 (2010).

    Article  Google Scholar 

  164. Ting, T. C. et al. Energy–level alignment for single–molecule conductance of extended metal–atom chains. Angew. Chem. Int. Ed. 54, 15734–15738 (2015).

    Article  Google Scholar 

  165. Green, J. E. et al. A 160–kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007).

    Article  ADS  Google Scholar 

  166. Li, Y. et al. Three–state single–molecule naphthalenediimide switch: Integration of a pendant redox unit for conductance tuning. Angew. Chem. Int. Ed. 54, 13586–13589 (2015).

    Article  Google Scholar 

  167. Liu, J. et al. Radical–enhanced charge transport in single–molecule phenothiazine electrical junctions. Angew. Chem. Int. Ed. 56, 13061–13065 (2017).

    Article  Google Scholar 

  168. Yin, X. et al. A reversible single–molecule switch based on activated antiaromaticity. Sci. Adv. 3, eaao2615 (2017).

    Article  Google Scholar 

  169. Bousseksou, A., Molnar, G., Salmon, L. & Nicolazzi, W. Molecular spin crossover phenomenon: recent achievements and prospects. Chem. Soc. Rev. 40, 3313–3335 (2011).

    Article  Google Scholar 

  170. Thiele, S. et al. Electrically driven nuclear spin resonance in single–molecule magnets. Science 344, 1135–1138 (2014).

    Article  ADS  Google Scholar 

  171. Natterer, F. D. et al. Reading and writing single–atom magnets. Nature 543, 226–228 (2017).

    Article  ADS  Google Scholar 

  172. Harzmann, G. D., Frisenda, R., van der Zant, H. S. & Mayor, M. Single–molecule spin switch based on voltage–triggered distortion of the coordination sphere. Angew. Chem. Int. Ed. 54, 13425–13430 (2015).

    Article  Google Scholar 

  173. Schwarz, F. et al. Field–induced conductance switching by charge–state alternation in organometallic single–molecule junctions. Nat. Nanotechnol. 11, 170–176 (2016).

    Article  ADS  Google Scholar 

  174. Frisenda, R., Janssen, V. A., Grozema, F. C., van der Zant, H. S. & Renaud, N. Mechanically controlled quantum interference in individual pi–stacked dimers. Nat. Chem. 8, 1099–1104 (2016).

    Article  Google Scholar 

  175. Manrique, D. Z. et al. A quantum circuit rule for interference effects in single–molecule electrical junctions. Nat. Commun. 6, 6389 (2015).

    Article  Google Scholar 

  176. Solomon, G. C., Herrmann, C., Hansen, T., Mujica, V. & Ratner, M. A. Exploring local currents in molecular junctions. Nat. Chem. 2, 223–228 (2010).

    Article  Google Scholar 

  177. Vazquez, H. et al. Probing the conductance superposition law in single–molecule circuits with parallel paths. Nat. Nanotechnol. 7, 663–667 (2012).

    Article  ADS  Google Scholar 

  178. Rabache, V. et al. Direct observation of large quantum interference effect in anthraquinone solid–state junctions. J. Am. Chem. Soc. 135, 10218–10221 (2013).

    Article  Google Scholar 

  179. Markussen, T. & Thygesen, K. S. Temperature effects on quantum interference in molecular junctions. Phys. Rev. B 89, 085420 (2014).

    Article  ADS  Google Scholar 

  180. Hartle, R., Butzin, M., Rubio–Pons, O. & Thoss, M. Quantum interference and decoherence in single–molecule junctions: how vibrations induce electrical current. Phys. Rev. Lett. 107, 046802 (2011).

    Article  ADS  Google Scholar 

  181. Bergfield, J. P., Solomon, G. C., Stafford, C. A. & Ratner, M. A. Novel quantum interference effects in transport through molecular radicals. Nano Lett. 11, 2759–2764 (2011).

    Article  ADS  Google Scholar 

  182. Markussen, T., Stadler, R. & Thygesen, K. S. The relation between structure and quantum interference in single molecule junctions. Nano Lett. 10, 4260–4265 (2010).

    Article  ADS  Google Scholar 

  183. Andrews, D. Q., Solomon, G. C., Van Duyne, R. P. & Ratner, M. A. Single molecule electronics: Increasing dynamic range and switching speed using cross–conjugated species. J. Am. Chem. Soc. 130, 17309–17319 (2008).

    Article  Google Scholar 

  184. Magoga, M. & Joachim, C. Conductance of molecular wires connected or bonded in parallel. Phys. Rev. B 59, 16011–16021 (1999).

    Article  ADS  Google Scholar 

  185. Nozaki, D., Avdoshenko, S. M., Sevinçli, H., Gutierrez, R. & Cuniberti, G. Prediction of quantum interference in molecular junctions using a parabolic diagram: understanding the origin of Fano and anti–resonances. J. Phys. Conf. Ser. 427, 012013 (2013).

    Article  Google Scholar 

  186. Ke, S. H., Yang, W. & Baranger, H. U. Quantum–interference–controlled molecular electronics. Nano Lett. 8, 3257–3261 (2008).

    Article  ADS  Google Scholar 

  187. Cardamone, D. M., Stafford, C. A. & Mazumdar, S. Controlling quantum transport through a single molecule. Nano Lett. 6, 2422–2426 (2006).

    Article  ADS  Google Scholar 

  188. Baer, R. & Neuhauser, D. Phase coherent electronics: a molecular switch based on quantum interference. J. Am. Chem. Soc. 124, 4200–4201 (2002).

    Article  Google Scholar 

  189. Garner, M. H. et al. Comprehensive suppression of single–molecule conductance using destructive σ–interference. Nature 558, 415–419 (2018).

    Article  ADS  Google Scholar 

  190. Baghernejad, M. et al. Electrochemical control of single–molecule conductance by Fermi–level tuning and conjugation switching. J. Am. Chem. Soc. 136, 17922–17925 (2014).

    Article  Google Scholar 

  191. Liu, X. et al. Gating of quantum interference in molecular junctions by heteroatom substitution. Angew. Chem. Int. Ed. 56, 173–176 (2017).

    Article  Google Scholar 

  192. Venkataraman, L. et al. Electronics and chemistry: varying single–molecule junction conductance using chemical substituents. Nano Lett. 7, 502–506 (2007).

    Article  ADS  Google Scholar 

  193. Lo, W. Y., Bi, W., Li, L., Jung, I. H. & Yu, L. Edge–on gating effect in molecular wires. Nano Lett. 15, 958–962 (2015).

    Article  ADS  Google Scholar 

  194. Li, L., Lo, W. –Y., Cai, Z., Zhang, N. & Yu, L. Proton–triggered switch based on a molecular transistor with edge–on gate. Chem. Sci. 7, 3137–3141 (2016).

    Article  Google Scholar 

  195. Li, R. et al. Switching of charge transport pathways via delocalization changes in single–molecule metallacycles junctions. J. Am. Chem. Soc. 139, 14344–14347 (2017).

    Article  Google Scholar 

  196. Yang, G. et al. Protonation tuning of quantum interference in azulene–type single–molecule junctions. Chem. Sci. 8, 7505–7509 (2017).

    Article  Google Scholar 

  197. Ismael, A. K. et al. Side–group–mediated mechanical conductance switching in molecular junctions. Angew. Chem. Int. Ed. 56, 15378–15382 (2017).

    Article  Google Scholar 

  198. Gu, C., Jia, C. & Guo, X. Single–molecule electrical detection with real–time label–free capability and ultrasensitivity. Small Methods 1, 1700071 (2017).

    Article  Google Scholar 

  199. Sorgenfrei, S. et al. Label–free single–molecule detection of DNA–hybridization kinetics with a carbon nanotube field–effect transistor. Nat. Nanotechnol. 6, 126–132 (2011).

    Article  ADS  Google Scholar 

  200. Choi, Y. K. et al. Single–molecule lysozyme dynamics monitored by an electronic circuit. Science 335, 319–324 (2012).

    Article  ADS  Google Scholar 

  201. Bouilly, D. et al. Single–molecule reaction chemistry in patterned nanowells. Nano Lett. 16, 4679–4685 (2016).

    Article  ADS  Google Scholar 

  202. Xin, N. & Guo, X. Catalyst: the renaissance of molecular electronics. Chem 3, 373–376 (2017).

    Article  Google Scholar 

  203. Wen, H. et al. Complex formation dynamics in a single–molecule electronic device. Sci. Adv. 2, e1601113 (2016).

    Article  ADS  Google Scholar 

  204. Aragones, A. C. et al. Electrostatic catalysis of a Diels–Alder reaction. Nature 531, 88–91 (2016).

    Article  ADS  Google Scholar 

  205. Guan, J. et al. Direct single–molecule dynamic detection of chemical reactions. Sci. Adv. 4, eaar2177 (2018).

    Article  Google Scholar 

  206. Zhou, C. et al. Direct observation of single–molecule hydrogen–bond dynamics with single–bond resolution. Nat. Commun. 9, 807 (2018).

    Article  ADS  Google Scholar 

  207. Huang, C. et al. Single–molecule detection of dihydroazulene photo–thermal reaction using break junction technique. Nat. Commun. 8, 15436 (2017).

    Article  ADS  Google Scholar 

  208. Gu, C. et al. Label–free dynamic detection of single–molecule nucleophilic–substitution reactions. Nano Lett. 18, 4156–4162 (2018).

    Article  ADS  Google Scholar 

  209. Van Hal, P. A. et al. Upscaling, integration and electrical characterization of molecular junctions. Nat. Nanotechnol. 3, 749–754 (2008).

    Article  ADS  Google Scholar 

  210. Bergren, A. J. et al. Musical molecules: the molecular junction as an active component in audio distortion circuits. J. Phys. Condens. Matter 28, 094011 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Schott and Y. Feng for giving feedback on the manuscript. The authors acknowledge primary financial support from the National Key R&D Program of China (2017YFA0204901; X.G.), the National Natural Science Foundation of China (21727806; X.G.), the Natural Science Foundation of Beijing (Z181100004418003; X.G.), Northwestern University (J.F.S. and M.A.R.), the Israel–US Binational Science Foundation (A.N.), the German Research Foundation (DFG TH 820/11–1; A.N.), the US National Science Foundation (grant no. CHE1665291; A.N.) and the University of Pennsylvania (A.N.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and contributed to the discussion of content, as well as the writing and editing of the article, before submission.

Corresponding authors

Correspondence to J. Fraser Stoddart or Xuefeng Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, N., Guan, J., Zhou, C. et al. Concepts in the design and engineering of single-molecule electronic devices. Nat Rev Phys 1, 211–230 (2019). https://doi.org/10.1038/s42254-019-0022-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-019-0022-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing