Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Near-infrared fluorophores for biomedical imaging

Abstract

In vivo near-infrared (NIR) fluorescence imaging is an emerging biomedical imaging modality for use in both fundamental scientific research and clinical practice. Owing to advances in reducing photon scattering, light absorption and autofluorescence through innovations in the broad 700–1,700 nm NIR window, NIR fluorescence affords high imaging resolution with increasing tissue penetration depths. In this Review, we cover recent progress made on NIR fluorescence imaging in both the 700–900 nm NIR-I and the 1,000–1,700 nm NIR-II windows by highlighting an increasingly developing palette of biocompatible NIR fluorophores that span the entire NIR window and include inorganic nanoparticles, organic macromolecules and small molecules with tunable emission wavelengths. Together with advances in imaging instrumentation allowing for the efficient detection of long-wavelength NIR photons, recently developed NIR fluorophores have fuelled biomedical imaging from contrast-enhanced imaging of anatomical structures and molecular imaging of specific biomarkers to functional imaging of physiological activities, both for preclinical animal studies and clinical diagnostics and interventions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Motivation for NIR fluorescence-based biomedical imaging.
Figure 2: NIR-I fluorescent agents for highly specific tissue targeting and imaging.
Figure 3: NIR-I fluorescent proteins.
Figure 4: Clinical NIR-I imaging.
Figure 5: In vivo NIR-II fluorescence imaging with SWCNTs.
Figure 6: In vivo NIR-II fluorescence imaging with QDs and rare-earth-doped nanoparticles.
Figure 7: Progress towards small-molecule organic NIR-II fluorophores.

Similar content being viewed by others

References

  1. Ntziachristos, V., Ripoll, J., Wang, L. H. V. & Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 23, 313–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Hong, G., Diao, S., Antaris, A. L. & Dai, H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 115, 10816–10906 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Naumova, A. V., Modo, M., Moore, A., Murry, C. E. & Frank, J. A. Clinical imaging in regenerative medicine. Nat. Biotechnol. 32, 804–818 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Johnsen, S. Hidden in plain sight: the ecology and physiology of organismal transparency. Biol. Bull. 201, 301–318 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Hoover, E. E. & Squier, J. A. Advances in multiphoton microscopy technology. Nat. Photon. 7, 93–101 (2013).

    Article  CAS  Google Scholar 

  8. Legant, W. R. et al. High-density three-dimensional localization microscopy across large volumes. Nat. Methods 13, 359–365 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Horstmeyer, R., Ruan, H. W. & Yang, C. H. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photon. 9, 563–571 (2015).

    Article  CAS  Google Scholar 

  10. Fujimoto, J. G. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotechnol. 21, 1361–1367 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Smith, A. M., Mancini, M. C. & Nie, S. M. Bioimaging: second window for in vivo imaging. Nat. Nanotech. 4, 710–711 (2009).

    Article  CAS  Google Scholar 

  12. Matsui, A. et al. Real-time intra-operative near-infrared fluorescence identification of the extrahepatic bile ducts using clinically available contrast agents. Surgery 148, 87–95 (2010).

    Article  PubMed  Google Scholar 

  13. Tanaka, E. et al. Real-time assessment of cardiac perfusion, coronary angiography, and acute intravascular thrombi using dual-channel near-infrared fluorescence imaging. J. Thorac. Cardiov. Sur. 138, 133–140 (2009).

    Article  CAS  Google Scholar 

  14. Verbeek, F. P. R. et al. Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience. J. Urology 190, 574–579 (2013).

    Article  CAS  Google Scholar 

  15. Troyan, S. L. et al. The FLARETM intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann. Surg. Oncol. 16, 2943–2952 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ashitate, Y. et al. Simultaneous assessment of luminal integrity and vascular perfusion of the gastrointestinal tract using dual-channel near-infrared fluorescence. Mol. Imaging 11, 301–308 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Verbeek, F. P. R. et al. Optimization of near-infrared fluorescence cholangiography for open and laparoscopic surgery. Surg. Endosc. 28, 1076–1082 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. van der Vorst, J. R. et al. Near-infrared fluorescence-guided resection of colorectal liver metastases. Cancer 119, 3411–3418 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Tummers, Q. R. J. G. et al. Intraoperative guidance in parathyroid surgery using near-infrared fluorescence imaging and low-dose methylene blue. Surgery 158, 1323–1330 (2015).

    Article  PubMed  Google Scholar 

  20. Tummers, Q. R. J. G. et al. First experience on laparoscopic near-infrared fluorescence imaging of hepatic uveal melanoma metastases using indocyanine green. Surg. Innov. 22, 20–25 (2015).

    Article  PubMed  Google Scholar 

  21. Verbeek, F. P. R. et al. Sentinel lymph node biopsy in vulvar cancer using combined radioactive and fluorescence guidance. Int. J. Gynecol. Cancer 25, 1086–1093 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Choi, H. S. et al. Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat. Biotechnol. 31, 148–153 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Hyun, H. et al. 700-nm zwitterionic near-infrared fluorophores for dual-channel image-guided surgery. Mol. Imaging. Biol. 18, 52–61 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Choi, H. S. et al. Synthesis and in vivo fate of zwitterionic near-infrared fluorophores. Angew. Chem. Int. Ed. 50, 6258–6263 (2011).

    Article  CAS  Google Scholar 

  25. Wang, Y. G. et al. A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nat. Mater. 13, 204–212 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Grossi, M. et al. Lysosome triggered near-infrared fluorescence imaging of cellular trafficking processes in real time. Nat. Commun. 7, 10855 (2016).

  27. Zheng, X. C. et al. Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo. Nat. Commun. 6, 5834 (2015).

  28. Becker, A. et al. Receptor-targeted optical imaging of tumours with near-infrared fluorescent ligands. Nat. Biotechnol. 19, 327–331 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Hyun, H. et al. Phosphonated near-infrared fluorophores for biomedical imaging of bone. Angew. Chem. Int. Ed. 53, 10668–10672 (2014).

    Article  CAS  Google Scholar 

  30. Zaheer, A. et al. In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat. Biotechnol. 19, 1148–1154 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Hyun, H. et al. Cartilage-specific near-infrared fluorophores for biomedical imaging. Angew. Chem. Int. Ed. 54, 8648–8652 (2015).

    Article  CAS  Google Scholar 

  32. Wada, H. et al. Pancreas-targeted NIR fluorophores for dual-channel image-guided abdominal surgery. Theranostics 5, 1–11 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hyun, H. et al. Structure-inherent targeting of near-infrared fluorophores for parathyroid and thyroid gland imaging. Nat. Med. 21, 192–197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park, M. H. et al. Prototype nerve-specific near-infrared fluorophores. Theranostics 4, 823–833 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Bhushan, K. R., Misra, P., Liu, F., Mathur, S., Lenkinski, R. E. & Frangioni, J. V. Detection of breast cancer microcalcifications using a dual-modality SPECT/NIR fluorescent probe. J. Am. Chem. Soc. 130, 17648–17649 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aikawa, E. et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation 116, 2841–2850 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Vinegoni, C. et al. Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Sci. Transl. Med. 384ra, 45 (2011).

    Google Scholar 

  38. Hintersteiner, M. et al. In vivo detection of amyloid-β deposits by near-infrared imaging using an oxazine-derivative probe. Nat. Biotechnol. 23, 577–583 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Staderini, M., Martin, M. A., Bolognesi, M. L. & Menendez, J. C. Imaging of β-amyloid plaques by near infrared fluorescent tracers: a new frontier for chemical neuroscience. Chem. Soc. Rev. 44, 1807–1819 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Watanabe, H. et al. Molecular imaging of β-amyloid plaques with near-infrared boron dipyrromethane (BODIPY)-based fluorescent probes. Mol. Imaging 12, 338–347 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Kim, E. et al. Optimized near-IR fluorescent agents for in vivo imaging of Btk expression. Bioconjugate Chem. 26, 1513–1518 (2015).

    Article  CAS  Google Scholar 

  42. van Veggel, F. C. J. M. Near-infrared quantum dots and their delicate synthesis, challenging characterization, and exciting potential applications. Chem. Mater. 26, 111–122 (2014).

    Article  CAS  Google Scholar 

  43. Wu, C. F. & Chiu, D. T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem. Int. Ed. 52, 3086–3109 (2013).

    Article  CAS  Google Scholar 

  44. So, M. K., Xu, C. J., Loening, A. M., Gambhir, S. S. & Rao, J. H. Self-illuminating quantum dot conjugates for in vivo imaging. Nat. Biotechnol. 24, 339–343 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. So, M. K., Loening, A. M., Gambhir, S. S. & Rao, J. H. Creating self-illuminating quantum dot conjugates. Nat. Protoc. 1, 1160–1164 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Ma, N., Marshall, A. F. & Rao, J. H. Near-infrared light emitting luciferase via biomineralization. J. Am. Chem. Soc. 132, 6884–6885 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kamkaew, A. et al. Quantum dot-NanoLuc bioluminescence resonance energy transfer enables tumour imaging and lymph node mapping in vivo. Chem. Commun. 52, 6997–7000 (2016).

    Article  CAS  Google Scholar 

  48. Hasegawa, M., Tsukasaki, Y., Ohyanagi, T. & Jin, T. Bioluminescence resonance energy transfer coupled near-infrared quantum dots using GST-tagged luciferase for in vivo imaging. Chem. Commun. 49, 228–230 (2013).

    Article  CAS  Google Scholar 

  49. Yao, H. Q., Zhang, Y., Xiao, F., Xia, Z. Y. & Rao, J. H. Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases. Angew. Chem. Int. Ed. 46, 4346–4349 (2007).

    Article  CAS  Google Scholar 

  50. Xiong, L. Q., Shuhendler, A. J. & Rao, J. H. Self-luminescing BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging. N at. Commun . 3, 1193 (2012).

  51. Zhang, N., Francis, K. P., Prakash, A. & Ansaldi, D. Enhanced detection of myeloperoxidase activity in deep tissues through luminescent excitation of near-infrared nanoparticles. Nat. Med. 19, 500–505 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Palner, M., Pu, K. Y., Shao, S. & Rao, J. H. Semiconducting polymer nanoparticles with persistent near-infrared luminescence for in vivo optical imaging. Angew. Chem. Int. Ed. 54, 11477–11480 (2015).

    Article  CAS  Google Scholar 

  53. Abdukayum, A., Chen, J. T., Zhao, Q. & Yan, X. P. Functional near infrared-emitting Cr3+/Pr3+ Co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 135, 14125–14133 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Maldiney, T. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 13, 418–426 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Yu, M. X., Liu, J. B., Ning, X. H. & Zheng, J. High-contrast noninvasive imaging of kidney clearance kinetics enabled by renal clearable nanofluorophores. Angew. Chem. Int. Ed. 54, 15434–15438 (2015).

    Article  CAS  Google Scholar 

  56. Choi, H. S. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Choi, H. S. et al. Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett. 9, 2354–2359 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu, M. X. et al. Noninvasive staging of kidney dysfunction enabled by renal-clearable luminescent gold nanoparticles. Angew. Chem. Int. Ed. 55, 2787–2791 (2016).

    Article  CAS  Google Scholar 

  59. Yu, M. X. & Zheng, J. Clearance pathways and tumour targeting of imaging nanoparticles. ACS Nano 9, 6655–6674 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Park, J. H. et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 8, 331–336 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gu, L. et al. In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat. Commun. 4, 2326 (2013).

  62. Sun, X. M. et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1, 203–212 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, Y. J. et al. Surface coating-dependent cytotoxicity and degradation of graphene derivatives: towards the design of non-toxic, degradable nano-graphene. Small 10, 1544–1554 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Shu, X. K. et al. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324, 804–807 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Filonov, G. S. et al. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat. Biotechnol. 29, 757–761 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shcherbakova, D. M. & Verkhusha, V. V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat. Methods 10, 751–754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Krumholz, A., Shcherbakova, D. M., Xia, J., Wang, L. H. V. & Verkhusha, V. V. Multicontrast photoacoustic in vivo imaging using near-infrared fluorescent proteins. Sci. Rep. 4, 3939 (2014).

  68. Piatkevich, K. D., Subach, F. V. & Verkhusha, V. V. Far-red light photoactivatable near-infrared fluorescent proteins engineered from a bacterial phytochrome. Nat. Commun. 4, 2153 (2013).

  69. Piatkevich, K. D., Subach, F. V. & Verkhusha, V. V. Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals. Chem. Soc. Rev. 42, 3441–3452 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shcherbakova, D. M., Baloban, M. & Verkhusha, V. V. Near-infrared fluorescent proteins engineered from bacterial phytochromes. Curr. Opin. Chem. Biol. 27, 52–63 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shcherbakova, D. M. et al. Bright monomeric near-infrared fluorescent proteins as tags and biosensors for multiscale imaging. Nat. Commun. 7, 12405 (2016).

  72. Yu, D. et al. An improved monomeric infrared fluorescent protein for neuronal and tumour brain imaging. Nat. Commun. 5, 3626 (2014).

  73. Yu, D. et al. A naturally monomeric infrared fluorescent protein for protein labeling in vivo. Nat. Methods 12, 763–765 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Chu, J. et al. Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein. Nat. Methods 11, 572–578 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kaberniuk, A. A., Shemetov, A. A. & Verkhusha, V. V. A bacterial phytochrome-based optogenetic system controllable with near-infrared light. Nat. Methods 13, 591–597 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhu, B. H., Robinson, H., Zhang, S. L., Wu, G. & Sevick-Muraca, E. M. Longitudinal far red gene-reporter imaging of cancer metastasis in preclinical models: a tool for accelerating drug discovery. Biomed. Opt. Express 6, 3346–3351 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kuchimaru, T. et al. A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging. Nat. Commun. 7, 11856 (2016).

  78. Englman, R. & Jortner, J. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18, 145–164 (1970).

    Article  CAS  Google Scholar 

  79. Song, X., Chen, Q. & Liu, Z. Recent advances in the development of organic photothermal nano-agents. Nano Res. 8, 340–354 (2015).

    Article  CAS  Google Scholar 

  80. Xu, C., Shi, P., Li, M., Ren, J. S. & Qu, X. G. A cytotoxic amyloid oligomer self-triggered and NIR-enhanced amyloidosis therapeutic system. Nano Res. 8, 2431–2444 (2015).

    Article  CAS  Google Scholar 

  81. Tardivo, J. P. et al. Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagn. Photodyn. Ther. 2, 175–191 (2005).

    Article  CAS  Google Scholar 

  82. Zheng, M. B. et al. Robust ICG theranostic nanoparticles for folate targeted cancer imaging and highly effective photothermal therapy. ACS Appl. Mater. Interfaces 6, 6709–6716 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Yue, C. X. et al. IR-780 dye loaded tumour targeting theranostic nanoparticles for NIR imaging and photothermal therapy. Biomaterials 34, 6853–6861 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Zheng, M. B. et al. Single-step assembly of DOX/ICG loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 7, 2056–2067 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Liu, Y. et al. Theranostic near-infrared fluorescent nanoplatform for imaging and systemic siRNA delivery to metastatic anaplastic thyroid cancer. Proc. Natl Acad. Sci. USA 113, 7750–7755 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. James, N. S. et al. Comparative tumour imaging and PDT efficacy of HPPH conjugated in the mono- and di-forms to various polymethine cyanine dyes: part-2. Theranostics 3, 703–718 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Wu, X. M. et al. In vivo and in situ tracking cancer chemotherapy by highly photostable NIR fluorescent theranostic prodrug. J. Am. Chem. Soc. 136, 3579–3588 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Gu, K. Z. et al. Real-time tracking and in vivo visualization of β-galactosidase activity in colorectal tumor with a ratiometric near-infrared fluorescent probe. J. Am. Chem. Soc. 138, 5334–5340 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Vahrmeijer, A. L., Hutteman, M., van der Vorst, J. R., van de Velde, C. J. H. & Frangioni, J. V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 10, 507–518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mieog, J. S. D. et al. Toward optimization of imaging system and lymphatic tracer for near-infrared fluorescent sentinel lymph node mapping in breast cancer. Ann. Surg. Oncol. 18, 2483–2491 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hutteman, M. et al. Randomized, double-blind comparison of indocyanine green with or without albumin premixing for near-infrared fluorescence imaging of sentinel lymph nodes in breast cancer patients. Bre ast Cancer Res. Treat. 127, 163–170 (2011).

    Article  CAS  Google Scholar 

  92. Frangioni, J. V. Nonprofit foundations for open-source biomedical technology development. Nat. Biotechnol. 30, 928–932 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Burrows, P. E. et al. Lymphatic abnormalities are associated with RASA1 gene mutations in mouse and man. Proc. Natl Acad. Sci. USA 110, 8621–8626 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rosenthal, E. L. et al. Safety and tumour specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin. Cancer Res. 21, 3658–3666 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Korb, M. L. et al. Breast cancer imaging using the near-infrared fluorescent agent, CLR1502. Mol. Imaging 14, http://dx.doi.org/10.2310/7290.2014.00040 (2015).

  96. Warram, J. M. et al. Fluorescence-guided resection of experimental malignant glioma using cetuximab-IRDye 800CW. Brit. J. Neurosurg. 29, 850–858 (2015).

    Article  Google Scholar 

  97. Rosenthal, E. L. et al. Successful translation of fluorescence navigation during oncologic surgery: a consensus report. J. Nucl. Med. 57, 144–150 (2016).

    Article  PubMed  CAS  Google Scholar 

  98. Bunschoten, A. et al. Tailoring fluorescent dyes to optimize a hybrid RGD-tracer. Bioconjugate Chem. 27, 1253–1258 (2016).

    Article  CAS  Google Scholar 

  99. van Leeuwen, F. W., Valdés-Olmos, R., Buckle, T. & Vidal-Sicart, S. Hybrid surgical guidance based on the integration of radionuclear and optical technologies. Br. J. Radiol. 20150797 (2016).

  100. van den Berg, N. S. et al. First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery. Eur. J. Nucl. Med. Mol. Imaging 42, 1639-1647 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Qian, X. M. et al. In vivo tumour targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–90 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Kircher, M. F. et al. A brain tumour molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat. Med. 18, 829–834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gandra, N. et al. Tunable and amplified Raman gold nanoprobes for effective tracking (TARGET): in vivo sensing and imaging. Nanoscale 8, 8486–8494 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Garai, E., et al. A real-time clinical endoscopic system for intraluminal, multiplexed imaging of surface-enhanced Raman scattering nanoparticles. PLoS ONE 10, e0123185 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Wang, Y. et al. Quantitative molecular phenotyping with topically applied SERS nanoparticles for intraoperative guidance of breast cancer lumpectomy. Sci. Rep. 6, 21242 (2016).

  106. Rao, A. M. et al. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275, 187–191 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. Liu, Z. et al. Multiplexed five-color molecular imaging of cancer cells and tumour tissues with carbon nanotube Raman tags in the near-infrared. Nano Res. 3, 222–233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu, Z. et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotech. 2, 47–52 (2007).

    Article  CAS  Google Scholar 

  109. Liu, Z. et al. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl Acad. Sci. USA 105, 1410–1415 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Keren, S. et al. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc. Natl Acad. Sci. USA 105, 5844–5849 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zavaleta, C. et al. Noninvasive Raman spectroscopy in living mice for evaluation of tumour targeting with carbon nanotubes. Nano Lett. 8, 2800–2805 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang, C. et al. Protamine functionalized single-walled carbon nanotubes for stem cell labeling and in vivo Raman/magnetic resonance/photoacoustic triple-modal imaging. Adv. Funct. Mater. 22, 2363–2375 (2012).

    Article  CAS  Google Scholar 

  113. Gao, Y. P. et al. Multifunctional gold nanostar-based nanocomposite: synthesis and application for noninvasive MR-SERS imaging-guided photothermal ablation. Biomaterials 60, 31–41 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Robinson, J. T. et al. High performance in vivo near-IR (> 1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 3, 779–793 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mohs, A. M. et al. Hand-held spectroscopic device for in vivo and intraoperative tumour detection: contrast enhancement, detection sensitivity, and tissue penetration. Anal. Chem. 82, 9058–9065 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Bohndiek, S. E. et al. A small animal Raman instrument for rapid, wide-area, spectroscopic imaging. Proc. Natl Acad. Sci. USA 110, 12408–12413 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zavaleta, C. L. et al. A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc. Natl Acad. Sci. USA 110, 10062–10063 (2013).

    Article  CAS  Google Scholar 

  118. Zavaleta, C. L. et al. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc. Natl Acad. Sci. USA 106, 13511–13516 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Welsher, K. et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotech. 4, 773–780 (2009).

    Article  CAS  Google Scholar 

  120. Hong, G. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photon. 8, 723–730 (2014).

    Article  CAS  Google Scholar 

  121. Diao, S. et al. Fluorescence imaging in vivo at wavelengths beyond 1500 nm. Angew. Chem. Int. Ed. 54, 14758–14762 (2015).

    Article  CAS  Google Scholar 

  122. Wozniak, B. & Dera, J. Light Absorption in Sea Water 11–81 (Springer, 2007).

    Google Scholar 

  123. Diao, S. et al. Biological imaging without autofluorescence in the second near-infrared region. Nano Res. 8, 3027–3034 (2015).

    Article  CAS  Google Scholar 

  124. Villa, I. et al. 1.3 μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Res. 8, 649–665 (2015).

    Article  CAS  Google Scholar 

  125. del Rosal, B., Villa, I., Jaque, D. & Sanz-Rodríguez, F. In vivo autofluorescence in the biological windows: the role of pigmentation. J. Biophoton. 9, 1059–1067 (2016).

    Article  CAS  Google Scholar 

  126. Rogalski, A. Infrared Detectors (CRC, 2010).

    Book  Google Scholar 

  127. Hansen, M. P. & Malchow, D. S. Overview of SWIR detectors, cameras, and applications. Proc. SPIE Thermosense XXX 6939 69390l (2008).

  128. O’Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  PubMed  Google Scholar 

  129. Welsher, K., Sherlock, S. P. & Dai, H. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl Acad. Sci. USA 108, 8943–8948 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Liu, Z., Tabakman, S., Welsher, K. & Dai, H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2, 85–120 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Diao, S. et al. Chirality enriched (12,1) and (11,3) single-walled carbon nanotubes for biological imaging. J. Am. Chem. Soc. 134, 16971–16974 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Robinson, J. T. et al. In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumour uptake. J. Am. Chem. Soc. 134, 10664–10669 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Antaris, A. L. et al. Ultra-low doses of chirality sorted (6,5) carbon nanotubes for simultaneous tumour imaging and photothermal therapy. ACS Nano 7, 3644–3652 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Hong, G. et al. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat. Med. 18, 1841–1846 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hong, G. et al. Near-infrared II fluorescence for imaging hindlimb vessel regeneration with dynamic tissue perfusion measurement. Circ. Cardiovasc. Imag. 7, 517–525 (2014).

    Article  Google Scholar 

  136. Yomogida, Y., Tanaka, T., Zhang, M., Yudasaka, M., Wei, X. & Kataura, H. Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging.. Nat. Commun. 7, 12056 (2016).

  137. Bartholomeusz, G. et al. In vivo therapeutic silencing of hypoxia-inducible factor 1 alpha (HIF-1α) using single-walled carbon nanotubes noncovalently coated with siRNA. Nano Res. 2, 279–291 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Liang, C. et al. Tumour metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Adv. Mater. 26, 5646–5652 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Dang, X. N. et al. Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nat. Nanotech. 6, 377–384 (2011).

    Article  CAS  Google Scholar 

  141. Yi, H. J. et al. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumours. Nano Lett. 12, 1176–1183 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bardhan, N. M., Ghosh, D. & Belcher, A. M. Carbon nanotubes as in vivo bacterial probes. Nat. Commun. 5, 4918 (2014).

  143. Ghosh, D. et al. Deep, noninvasive imaging and surgical guidance of submillimeter tumours using targeted M13-stabilized single-walled carbon nanotubes. Proc. Natl Acad. Sci. USA 111, 13948–13953 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Iverson, N. M. et al. In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat. Nanotech. 8, 873–880 (2013).

    Article  CAS  Google Scholar 

  145. Hong, G. et al. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem. Int. Ed. 51, 9818–9821 (2012).

    Article  CAS  Google Scholar 

  146. Hu, F. et al. Real-time in vivo visualization of tumour therapy by a near-infrared-II Ag2S quantum dot-based theranostic nanoplatform. Nano Res. 8, 1637–1647 (2015).

    Article  CAS  Google Scholar 

  147. Dong, B. H. et al. Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging. Chem. Mater. 25, 2503–2509 (2013).

    Article  CAS  Google Scholar 

  148. Tsukasaki, Y. et al. Synthesis and optical properties of emission-tunable PbS/CdS core-shell quantum dots for in vivo fluorescence imaging in the second near-infrared window. RSC Adv. 4, 41164–41171 (2014).

    Article  CAS  Google Scholar 

  149. Li, C. Y. et al. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 35, 393–400 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Nakane, Y., Tsukasaki, Y., Sakata, T., Yasuda, H. & Jin, T. Aqueous synthesis of glutathione-coated PbS quantum dots with tunable emission for non-invasive fluorescence imaging in the second near-infrared biological window (1000–1400 nm). Chem. Commun. 49, 7584–7586 (2013).

    Article  CAS  Google Scholar 

  151. Chen, G. et al. Tracking of transplanted human mesenchymal stem cells in living mice using near-Infrared Ag2S quantum dots. Adv. Funct. Mater. 24, 2481–2488 (2014).

    Article  CAS  Google Scholar 

  152. Tsukasaki, Y. et al. A short-wavelength infrared emitting multimodal probe for non-invasive visualization of phagocyte cell migration in living mice. Chem. Commun. 50, 14356–14359 (2014).

    Article  CAS  Google Scholar 

  153. Chen, G. C. et al. In vivo real-time visualization of mesenchymal stem cells tropism for cutaneous regeneration using NIR-II fluorescence imaging. Biomaterials 53, 265–273 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Li, C. Y. et al. Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot. ACS Nano 9, 12255–12263 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Huang, S. et al. Development of NIR-II fluorescence image-guided and pH-responsive nanocapsules for cocktail drug delivery. Nano Res. 8, 1932–1943 (2015).

    Article  CAS  Google Scholar 

  156. Zhang, Y. et al. Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 6, 3695–3702 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gui, R. J., Wan, A. J., Liu, X. F., Yuan, W. & Jin, H. Water-soluble multidentate polymers compactly coating Ag2S quantum dots with minimized hydrodynamic size and bright emission tunable from red to second near-infrared region. Nanoscale 6, 5467–5473 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. Sasaki, A. et al. Recombinant protein (EGFP-Protein G)-coated PbS quantum dots for in vitro and in vivo dual fluorescence (visible and second-NIR) imaging of breast tumour. Nanoscale 7, 5115–5119 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Kong, Y. F. et al. Highly fluorescent ribonuclease-A-encapsulated lead sulfide quantum dots for ultrasensitive fluorescence in vivo imaging in the second near-infrared window. Chem. Mater. 28, 3041–3050 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cui, F. et al. From two-dimensional metal-organic coordination networks to near-infrared luminescent PbS nanoparticle/layered polymer composite materials. Nano Res. 1, 195–202 (2008).

    Article  CAS  Google Scholar 

  161. Naczynski, D. J. et al. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat. Commun. 4, 2199 (2013).

  162. Rocha, U. et al. Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window. Small 10, 1141–1154 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Zhang, X. W. et al. Magnetic and optical properties of NaGdF4:Nd3+, Yb3+, Tm3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window. Nano Res. 8, 636–648 (2015).

    Article  CAS  Google Scholar 

  164. Sun, L. D., Dong, H., Zhang, P. Z. & Yan, C. H. Upconversion of rare earth nanomaterials. Annu. Rev. Phys. Chem. 66, 619–642 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Yu, X. F. et al. Dopant-controlled synthesis of water-soluble hexagonal NaYF4 nanorods with efficient upconversion fluorescence for multicolor bioimaging. Nano Res. 3, 51–60 (2010).

    Article  CAS  Google Scholar 

  166. del Rosal, B. et al. Neodymium-based stoichiometric ultrasmall nanoparticles for multifunctional deep-tissue photothermal therapy. Adv. Opt. Mater. 4, 782–789 (2016).

    Article  CAS  Google Scholar 

  167. Tao, Z. et al. Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angew. Chem. Int. Ed. 52, 13002–13006 (2013).

    Article  CAS  Google Scholar 

  168. Hong, G. et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat. Commun. 5, 4206 (2014).

  169. Antaris, A. L. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. Zhang, Y. et al. Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 34, 3639–3646 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Dou, L. T., Liu, Y. S., Hong, Z. R., Li, G. & Yang, Y. Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev. 115, 12633–12665 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Dang, X. N. et al. Layer-by-layer assembled fluorescent probes in the second near-infrared window for systemic delivery and detection of ovarian cancer. Proc. Natl Acad. Sci. USA 113, 5179–5184 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Mei, J., Leung, N. L. C., Kwok, R. T. K., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: together we shine, united we soar!. Chem. Rev. 115, 11718–11940 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Zhang, X. D. et al. Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv. Mater. 28, 6872–6879 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sun, Y. et al. Novel benzo-bis (1,2,5-thiadiazole) fluorophores for in vivo NIR-II imaging of cancer. Chem. Sci. 7, 6203–6207 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kwon, S. Y., Jiang, S. N., Zheng, J. H., Choy, H. E. & Min, J. J. Rhodobacter sphaeroides, a novel tumour-targeting bacteria that emits natural near-infrared fluorescence. Microbiol. Immunol. 58, 172–179 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Albrecht-Buehler, G. Autofluorescence of live purple bacteria in the near infrared. Exp. Cell Res. 236, 43–50 (1997).

    Article  CAS  PubMed  Google Scholar 

  178. Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 1213–1225 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kasthuri, N. et al. Saturated reconstruction of a volume of neocortex. Cell 162, 648–661 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Chen, F., Tillberg, P. W. & Boyden, E. S. Expansion microscopy. Science 347, 543–548 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Cang, H., et al. Ex-STORM: expansion single molecule nanoscopy. Preprint at bioRxivhttp://dx.doi.org/10.1101/049403 (2016).

  183. Lin, C. W., Bachilo, S. M., Vu, M., Beckingham, K. M. & Weisman, R. B. Spectral triangulation: a 3D method for locating single-walled carbon nanotubes in vivo. Nanoscale 8, 10348–10357 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Cruz, L. J. et al. Targeted nanoparticles for the non-invasive detection of traumatic brain injury by optical imaging and fluorine magnetic resonance imaging. Nano Res. 9, 1276–1289 (2016).

    Article  CAS  Google Scholar 

  185. Withana, N. P. et al. Labeling of active proteases in fresh-frozen tissues by topical application of quenched activity-based probes. Nat. Protoc. 11, 184–191 (2016).

    Article  CAS  PubMed  Google Scholar 

  186. Phillips, E. et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 6,260ra149 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Page, M. J. et al. Non-invasive imaging and cellular tracking of pulmonary emboli by near-infrared fluorescence and positron-emission tomography. Nat. Commun. 6, 8448 (2015).

  188. Quan, L. et al. Near-infrared emitting fluorescent BODIPY nanovesicles for in vivo molecular imaging and drug delivery. ACS Appl. Mater. Interfaces 6, 16166–16173 (2014).

    Article  CAS  PubMed  Google Scholar 

  189. Liu, H. Y. et al. Quinoxaline-based polymer dots with ultrabright red to near-infrared fluorescence for in vivo biological imaging. J. Am. Chem. Soc. 137, 10420–10429 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Pu, K. Y. et al. Phosphorylcholine-coated semiconducting polymer nanoparticles as rapid and efficient labeling agents for in vivo cell tracking. Adv. Healthc. Mater. 3, 1292–1298 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhu, H. et al. Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice. Chem. Sci. 7, 5118–5125 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Li, K. et al. Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing. Sci. Rep. 3, 1150 (2013).

  193. Ding, D. et al. Conjugated polymer amplified far-red/near-infrared fluorescence from nanoparticles with aggregation-induced emission characteristics for targeted in vivo imaging. Adv. Healthc. Mater. 2, 500–507 (2013).

    Article  CAS  PubMed  Google Scholar 

  194. Xie, R. G., Chen, K., Chen, X. Y. & Peng, X. G. InAs/InP/ZnSe core/shell/shell quantum dots as near-infrared emitters: bright, narrow-band, non-cadmium containing, and biocompatible. Nano Res. 1, 457–464 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. del Rosal, B. et al. Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback. Adv. Funct. Mater. 26, 6060–6068 (2016).

    Article  CAS  Google Scholar 

  196. Bashkatov, A. N., Genina, E. A. & Tuchin, V. V. Optical properties of skin, subcutaneous, and muscle tissues: a review. J. Innov. Opt. Health Sci. 4, 9–38 (2011).

    Article  Google Scholar 

  197. Horton, N. G. et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photon. 7, 205–209 (2013).

    Article  CAS  Google Scholar 

  198. Palczewska, G. et al. Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye. Nat. Med. 20, 785–789 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Lakowicz, J. R. Principles of Fluorescence Spectroscopy (Springer, 2013).

    Google Scholar 

  200. Viegas, M. S., Martins, T. C., Seco, F. & do Carmo, A. An improved and cost-effective methodology for the reduction of autofluorescence in direct immunofluorescence studies on formalin-fixed paraffin-embedded tissues. Eur. J. Histochem. 51, 59–66 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institute of Health to H.D. (5R01CA135109-02 and 1R01HL127113-01A1), a Cal-BRAIN grant to H.D., a Stanford Graduate Fellowship to G.H. and an NSF Graduate Fellowship to A.L.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Dai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information Table 1. (PDF 623 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, G., Antaris, A. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1, 0010 (2017). https://doi.org/10.1038/s41551-016-0010

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-016-0010

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research