Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anisotropic magneto-Coulomb effects and magnetic single-electron-transistor action in a single nanoparticle

Abstract

A present challenge in the field of spintronics is the study of spin-dependent transport in nanodevices where all dimensions are reduced to only a few nanometres. The archetypical device structure used to explore spin transport at such a scale consists of a nanometre-sized object such as a molecule, quantum dot or nanotube connected by ferromagnetic contacts. New magneto-Coulomb effects are expected as a consequence of the interaction between charge and spin degrees of freedom. However, the focus has been mainly theoretical up to now with a lack of results on the experimental side. More importantly, in most of the studies the influence of the ferromagnetic electrodes has been largely overlooked. Here, we demonstrate that a significant magneto-Coulomb effect can be induced by conventional magnetic electrodes and mimic spin-valve magnetoresistance. Moreover, we show that the magnetic electrode can act as a gate leading to a ferromagnetic single-electron transistor with only two terminals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device and Coulomb-blockade characteristics.
Figure 2: Anisotropic magneto-Coulomb effect and Coulomb-blockade characteristics.
Figure 3: Anisotropic magnetoresistance effect for two different charges Q.

Similar content being viewed by others

References

  1. Barnaś, J. & Weymann, I. Spin effects in single-electron tunnelling. J. Phys. Condens. Matter 20, 423202 (2008).

    Article  ADS  Google Scholar 

  2. Seneor, P., Bernand-Mantel, A. & Petroff, F. Nanospintronics: When spintronics meets single electron physics. J. Phys. Condens. Matter 19, 165222 (2007).

    Article  ADS  Google Scholar 

  3. Yakushiji, K. et al. Enhanced spin accumulation and novel magnetotransport in nanoparticles. Nature Mater. 4, 57–61 (2005).

    Article  ADS  Google Scholar 

  4. Bernand-Mantel, A. et al. Evidence for spin injection in a single metallic nanoparticle: A step towards nanospintronics. Appl. Phys. Lett. 89, 062502 (2006).

    Article  ADS  Google Scholar 

  5. Wei, Y. G., Malec, C. E. & Davidović, D. Saturation of spin-polarized current in nanometer scale aluminium grains. Phys. Rev. B 76, 195327 (2007).

    Article  ADS  Google Scholar 

  6. Tsukagoshi, K., Alphenaar, B. W. & Ago, H. Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature 401, 572–574 (1999).

    Article  ADS  Google Scholar 

  7. Sahoo, S. et al. Electric field control of spin transport. Nature Phys. 1, 99–102 (2005).

    Article  ADS  Google Scholar 

  8. Hueso, L. E. et al. Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445, 410–413 (2007).

    Article  ADS  Google Scholar 

  9. Hauptmann, J. R., Paaske, J. & Lindelof, P. E. Electric-field-controlled spin reversal in a quantum dot with ferromagnetic contacts. Nature Phys. 4, 373–376 (2008).

    Article  ADS  Google Scholar 

  10. Wunderlich, J. et al. Coulomb blockade anisotropic magnetoresistance effect in a (Ga, Mn)As single-electron transistor. Phys. Rev. Lett. 97, 077201 (2006).

    Article  ADS  Google Scholar 

  11. Hamaya, K. et al. Spin transport through a single self-assembled InAs quantum dot with ferromagnetic leads. Appl. Phys. Lett. 90, 053108 (2007).

    Article  ADS  Google Scholar 

  12. Pasupathy, A. N. et al. The Kondo effect in the presence of ferromagnetism. Science 306, 86–89 (2004).

    Article  ADS  Google Scholar 

  13. Jensen, A., Hauptmann, J. R., Nygård, J. & Lindelof, P. E. Magnetoresistance in ferromagnetically contacted single-wall carbon nanotubes. Phys. Rev. B 72, 035419 (2005).

    Article  ADS  Google Scholar 

  14. Liu, R. S., Michalak, L., Canali, C. M., Samuelson, L. & Pettersson, H. Tunneling anisotropic magnetoresistance in Co/AlOx/Au tunnel junctions. Nano Lett. 8, 848–852 (2008).

    Article  ADS  Google Scholar 

  15. Ono, K., Shimada, K. & Ootuka, Y. Enhanced magnetic valve effect and magneto-Coulomb oscillations in ferromagnetic single electron transistor. J. Phys. Soc. Jpn 66, 1261–1264 (1997).

    Article  ADS  Google Scholar 

  16. van der Molen, S. J., Tombros, N. & van Wees, B. J. Magneto-Coulomb effect in spin-valve devices. Phys. Rev. B 73, 220406 (2006).

    Article  ADS  Google Scholar 

  17. Deshmukh, M. M. & Ralph, D. C. Using single quantum states as spin filters to study spin polarization in ferromagnets. Phys. Rev. Lett. 89, 266803 (2002).

    Article  ADS  Google Scholar 

  18. Gould, C. et al. Tunneling anisotropic magnetoresistance : A spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys. Rev. Lett. 93, 117203 (2004).

    Article  ADS  Google Scholar 

  19. Brey, L., Tejedor, C. & Fernández-Rossier, J. Tunnel Magneto-resistance in GaMnAs: Going beyond Julliere formula. Appl. Phys. Lett. 85, 1996–1998 (2004).

    Article  ADS  Google Scholar 

  20. Shick, A. B., Maca, F., Masek, J. & Jungwirth, T. Prospect for room temperature tunneling anisotropic magnetoresistance effect : Density of states anisotropies in CoPt systems. Phys. Rev. B 73, 024418 (2006).

    Article  ADS  Google Scholar 

  21. Park, B. G. et al. Tunneling anisotropic magnetoresistance in multilayer-(Co/Pt)/AlOx/Pt structures. Phys. Rev. Lett. 100, 087204 (2008).

    Article  ADS  Google Scholar 

  22. Moser, J. et al. Tunneling anisotropic magnetoresistance and spin–orbit coupling in Fe/GaAs/Au tunnel junction. Phys. Rev. Lett. 99, 056601 (2007).

    Article  ADS  Google Scholar 

  23. Hanna, A. E. & Tinkham, M. Variation of the Coulomb staircase in a two-junction system by fractional electron charge. Phys. Rev. B 44, 5919–5922 (1991).

    Article  ADS  Google Scholar 

  24. Gambardella, P. et al. Ferromagnetism in one-dimensional monoatomic metal chains. Nature 416, 301–304 (2002).

    Article  ADS  Google Scholar 

  25. Jacob, D., Fernández-Rossier, J. & Palacios, J. J. Anisotropic magnetoresistance in nanocontacts. Phys. Rev. B 77, 165412 (2008).

    Article  ADS  Google Scholar 

  26. Néel, L. Anisotropie magnétique superficielle et surstructures d’orientation. J. Phys. Rad. 15, 225–239 (1954).

    Article  Google Scholar 

  27. Gradmann, U. Magnetic surface anisotropies. J. Magn. Magn. Mater. 54, 733–736 (1986).

    Article  ADS  Google Scholar 

  28. Rodmacq, B., Auffret, S., Dieny, B., Monso, S. & Boyer, P. Crossovers from in-plane to perpendicular anisotropy in magnetic tunnel junctions as a function of the barrier degree of oxidation. J. Appl. Phys. 93, 7513–7515 (2003).

    Article  ADS  Google Scholar 

  29. Bouzehouane, K. et al. Nanolithography based on real-time electrically controlled indentation with an atomic force microscope for nanocontact elaboration. Nano Lett. 3, 1599–1602 (2003).

    Article  ADS  Google Scholar 

  30. Likharev, K. K. Correlated discrete transfer of single electron in ultrasmall tunnel junctions. IBM J. Res. Dev. 32, 144–158 (1988).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the RTRA triangle de la physique, CNano ile de France and the French ANR PNano program ‘Alicante’ for financial support.

Author information

Authors and Affiliations

Authors

Contributions

A.B.-M. and P.S. mainly carried out the project, including planning, experimental work, data analysis and writing of the paper. K.B. and S.F. contributed to the nanolithography of the samples. C.D. grew the samples. F.P. and A.F. participated in general discussions and writing of the paper.

Corresponding author

Correspondence to Pierre Seneor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernand-Mantel, A., Seneor, P., Bouzehouane, K. et al. Anisotropic magneto-Coulomb effects and magnetic single-electron-transistor action in a single nanoparticle. Nature Phys 5, 920–924 (2009). https://doi.org/10.1038/nphys1423

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1423

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing