Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance

Subjects

Abstract

Bright and efficient organic emitters of near-infrared light would be of use in applications ranging from biological imaging and medical therapy to night-vision devices. Here we report how a new class of Pt(II) complex phosphors have enabled the fabrication of organic light-emitting diodes that emit light at 740 nm with very high efficiency and radiance due to a high photoluminescence quantum yield of 81% and a highly preferred horizontal dipole orientation. The best devices exhibited an external quantum efficiency of 24 ± 1% in a normal planar organic light-emitting diode structure. The incorporation of a light out-coupling hemisphere structure further boosts the external quantum efficiency up to 55 ± 3%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structure and optical properties of Pt(II) complexes 1–3.
Figure 2: GIWAXS data for thin films of Pt(II) complexes 1–3.
Figure 3: Molecular orbitals of Pt(II) complex 1.
Figure 4: Device performance of optimized NIR OLEDs.

Similar content being viewed by others

References

  1. Pansare, V. J., Hejazi, S., Faenza, W. J. & Prud'homme, R. K. Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers. Chem. Mater. 24, 812–827 (2012).

    Article  Google Scholar 

  2. Stender, B., Völker, S. F., Lambert, C. & Pflaum, J. Optoelectronic processes in squaraine dye-doped OLEDs for emission in the near-infrared. Adv. Mater. 25, 2943–2947 (2013).

    Article  Google Scholar 

  3. Borek, C. et al. Highly efficient, near-infrared electrophosphorescence from a Pt–metalloporphyrin complex. Angew. Chem. Int. Ed. 46, 1109–1112 (2007).

    Article  Google Scholar 

  4. Guo, Z., Park, S., Yoon, J. & Shin, I. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem. Soc. Rev. 43, 16–29 (2014).

    Article  Google Scholar 

  5. Anzengruber, F., Avci, P., de Freitas, L. F. & Hamblin, M. R. T-cell mediated anti-tumor immunity after photodynamic therapy: why does it not always work and how can we improve it? Photochem. Photobiol. Sci. 14, 1492–1509 (2015).

    Article  Google Scholar 

  6. Wang, S. et al. Highly efficient near-infrared delayed fluorescence organic light emitting diodes using a phenanthrene-based charge-transfer compound. Angew. Chem. Int. Ed. 54, 13068–13072 (2015).

    Article  Google Scholar 

  7. Lu, H. et al. Highly efficient far red/near-infrared solid fluorophores: aggregation-induced emission, intramolecular charge transfer, twisted molecular conformation, and bioimaging applications. Angew. Chem. Int. Ed. 55, 155–159 (2016).

    Article  Google Scholar 

  8. Xiang, H., Cheng, J., Ma, X., Zhou, X. & Chruma, J. J. Near-infrared phosphorescence: materials and applications. Chem. Soc. Rev. 42, 6128–6185 (2013).

    Article  Google Scholar 

  9. Siebrand, W. Radiationless transitions in polyatomic molecules. II: triplet-ground-state transitions in aromatic hydrocarbons. J. Chem. Phys. 47, 2411–2422 (1967).

    Article  ADS  Google Scholar 

  10. Englman, R. & Jortner, J. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18, 145–164 (1970).

    Article  ADS  Google Scholar 

  11. Tong, C. C. & Hwang, K. C. Enhancement of OLED efficiencies and high-voltage stabilities of light-emitting materials by deuteration. J. Phys. Chem. C 111, 3490–3494 (2007).

    Article  Google Scholar 

  12. Prabhath, M. R. R., Romanova, J., Curry, R. J., Silva, S. R. P. & Jarowski, P. D. The role of substituent effects in tuning metallophilic interactions and emission energy of bis-4-(2-pyridyl)-1,2,3-triazolatoplatinum(II) complexes. Angew. Chem. Int. Ed. 54, 7949–7953 (2015).

    Article  Google Scholar 

  13. Li, K. et al. Highly phosphorescent platinum(II) emitters: photophysics, materials and biological applications. Chem. Sci. 7, 1653–1673 (2016).

    Article  Google Scholar 

  14. Escudero, D. & Thiel, W. Exploring the triplet excited state potential energy surfaces of a cyclometalated Pt(II) complex: is there non-Kasha emissive behavior? Inorg. Chem. 53, 11015–11019 (2014).

    Article  Google Scholar 

  15. Adams, C. J., Fey, N. & Weinstein, J. A. Near-infrared luminescence from platinum(II) diimine compounds. Inorg. Chem. 45, 6105–6107 (2006).

    Article  Google Scholar 

  16. Bennett, M. A. et al. Unprecedented near-infrared (NIR) emission in diplatinum(III) (d7–d7) complexes at room temperature. J. Am. Chem. Soc. 132, 7094–7103 (2010).

    Article  Google Scholar 

  17. Rossi, E. et al. Cyclometallated platinum(II) complexes of 1,3-di(2-pyridyl)benzenes: tuning excimer emission from red to near-infrared for NIR-OLEDs. J. Mater. Chem. 21, 15501–15510 (2011).

    Article  Google Scholar 

  18. Nguyen, M.-H. & Yip, J. H. K. Pushing pentacene-based fluorescence to the near-infrared region by platination. Organometallics 30, 6383–6392 (2011).

    Article  Google Scholar 

  19. Wu, X. et al. Highly efficient near-infrared emission from binuclear cyclo-metalated platinum complexes bridged with 5-(4-octyloxyphenyl)-1,3,4-oxadiazole-2-thiol in PLEDs. Org. Electron. 13, 932–937 (2012).

    Article  Google Scholar 

  20. Reid, E. F., Cook, V. C., Wilson, D. J. D. & Hogan, C. F. Facile tuning of luminescent platinum(II) Schiff base complexes from yellow to near-infrared: photophysics, electrochemistry, electrochemiluminescence and theoretical calculations. Chem. Eur. J. 19, 15907–15917 (2013).

    Article  Google Scholar 

  21. Zems, Y., Moiseev, A. G. & Perepichka, D. F. Convenient synthesis of a highly soluble and stable phosphorescent platinum porphyrin dye. Org. Lett. 15, 5330–5333 (2013).

    Article  Google Scholar 

  22. Nisic, F. et al. Platinum(II) complexes with cyclometallated 5-π-delocalized-donor-1,3-di(2-pyridyl)benzene ligands as efficient phosphors for NIR-OLEDs. J. Mater. Chem. C 2, 1791–1800 (2014).

    Article  Google Scholar 

  23. Klaus, D. R., Keene, M., Silchenko, S., Berezin, M. & Gerasimchuk, N. 1D polymeric platinum cyanoximate: a strategy toward luminescence in the near-infrared region beyond 1000 nm. Inorg. Chem. 54, 1890–1900 (2015).

    Article  Google Scholar 

  24. Ku, H.-Y. et al. Luminescent Pt(II) complexes bearing dual isoquinolinyl pyrazolates: fundamentals and applications. Dalton Trans. 44, 8552–8563 (2015).

    Article  Google Scholar 

  25. Łapok, Ł. et al. Near infrared phosphorescent, non-oxidizable palladium and platinum perfluoro-phthalocyanines. ChemPhysChem 17, 1123–1135 (2016).

    Article  Google Scholar 

  26. Zhang, Y.-M. et al. Achieving near-infrared emission in platinum(II) complexes by using an extended donor–acceptor-type ligand. Dalton Trans. 45, 5071–5080 (2016).

    Article  Google Scholar 

  27. Cocchi, M., Kalinowski, J., Virgili, D. & Williams, J. A. G. Excimer-based red/near-infrared organic light-emitting diodes with very high quantum efficiency. Appl. Phys. Lett. 92, 113302 (2008).

    Article  ADS  Google Scholar 

  28. Graham, K. R. et al. Extended conjugation platinum(II) porphyrins for use in near-infrared emitting organic light emitting diodes. Chem. Mater. 23, 5305–5312 (2011).

    Article  Google Scholar 

  29. Kim, K.-H. et al. Crystal organic light-emitting diodes with perfectly oriented non-doped Pt-based emitting layer. Adv. Mater. 28, 2526–2532 (2016).

    Article  Google Scholar 

  30. Reineke, S. et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234–238 (2009).

    Article  ADS  Google Scholar 

  31. Wang, Z. B. et al. Unlocking the full potential of organic light-emitting diodes on flexible plastic. Nat. Photon. 5, 753–757 (2011).

    Article  ADS  Google Scholar 

  32. Lu, C.-Y. et al. Achieving above 60% external quantum efficiency in organic light-emitting devices using ITO-free low-index transparent electrode and emitters with preferential horizontal emitting dipoles. Adv. Funct. Mater. 26, 3250–3258 (2016).

    Article  ADS  Google Scholar 

  33. Chang, S.-Y. et al. Blue-emitting platinum(II) complexes bearing both pyridylpyrazolate chelate and bridging pyrazolate ligands: synthesis, structures, and photophysical properties. Inorg. Chem. 46, 11202–11212 (2007).

    Article  Google Scholar 

  34. Huang, Y.-C. et al. Insight into evolution, processing and performance of multi-length-scale structure in planar heterojunction pervoskite solar cell. Sci. Rep. 5, 13657 (2015).

    Article  ADS  Google Scholar 

  35. Chang, S.-Y. et al. Platinum(II) complexes with pyridyl azolate-based chelates: synthesis, structural characterization, and tuning of photo- and electrophosphorescence. Inorg. Chem. 45, 137–146 (2006).

    Article  Google Scholar 

  36. Kaska, M., Rawls, H. R. & El-Bayoumi, M. A. The exciton model in molecular spectroscopy. Pure Appl. Chem. 11, 371–392 (1965).

    Article  Google Scholar 

  37. Pieper, J. et al. Excitonic energy level structure and pigment−protein interactions in the recombinant water-soluble chlorophyll protein. I. Difference fluorescence line-narrowing. J. Phys. Chem. B 115, 4042–4052 (2011).

    Article  Google Scholar 

  38. Lin, C.-L., Cho, T.-Y., Chang, C.-H. & Wu, C.-C. Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode. Appl. Phys. Lett. 88, 081114 (2006).

    Article  ADS  Google Scholar 

  39. Lin, C.-L., Chang, H.-C., Tien, K.-C. & Wu, C.-C. Influences of resonant wavelengths on performances of microcavity organic light-emitting devices. Appl. Phys. Lett. 90, 071111 (2007).

    Article  ADS  Google Scholar 

  40. De Mello, J. C., Wittmann, F. H. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997).

    Article  Google Scholar 

  41. Frisch, M. J. et al. Gaussian 09 Revision D.01 (Gaussian Inc., 2013).

    Google Scholar 

  42. Forrest, S. R., Bradley, D. C. & Thompson, M. E. Measuring the efficiency of organic light-emitting devices. Adv. Mater. 15, 1043–1048 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Science and Technology of Taiwan. We also thank the National Center for High-performance Computing (NCHC) for the computer time and facilities.

Author information

Authors and Affiliations

Authors

Contributions

K.T.L. conducted the synthesis and characterization of the Pt(II) complexes. R.-W.C.-C. executed the OLED fabrication and photophysical measurements. H.-W.L. designed the OLED structures, analysed the solid-state and OLED data and prepared the manuscript. Y.-J.S. did the optical modelling and simulations. S.-H.L. performed the computational calculations. P.-T.C. developed the theoretical approach, interpreted the photophysics and prepared the manuscript. C.-S.T. and Y.-C.H. conducted the GIWAXS measurements and analysed the data. Y.C. designed the Pt(II) complexes and prepared the manuscript. All authors discussed the results and contributed to the paper.

Corresponding authors

Correspondence to Hao-Wu Lin, Pi-Tai Chou or Yun Chi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1715 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuong Ly, K., Chen-Cheng, RW., Lin, HW. et al. Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nature Photon 11, 63–68 (2017). https://doi.org/10.1038/nphoton.2016.230

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.230

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing