Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna

Abstract

Owing to the size mismatch between light and nanoscale objects such as single molecules, it is important to be able to control light–molecule interactions1,2,3,4. Plasmonic nanoantennas create highly enhanced local fields when pumped resonantly, leading to increased Raman scattering5, but whether fluorescence enhancement occurs depends upon a variety of factors. Although sharp metal tips6 and colloids7,8 can enhance fluorescence, the highly enhanced optical fields of lithographically fabricated bowtie nanoantennas9 provide a structure that is more controllable and amenable to integration. Using gold bowties, we observe enhancements of a single molecule's fluorescence up to a factor of 1,340, ten times higher than reported previously7,8,10,11,12,13,14,15,16,17,18,19,20,21,22. Electromagnetic simulations reveal that this is a result of greatly enhanced absorption and an increased radiative emission rate, leading to enhancement of the intrinsic quantum efficiency by an estimated factor of nine, despite additional non-radiative ohmic effects. Bowtie nanoantennas thus show great potential for high-contrast selection of single nanoemitters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Measurement of fF for single fluorescent molecules (SMs) as a function of bowtie gap size.
Figure 3: Electromagnetic simulations of single fluorescent molecule fluorescence near a gold bowtie nanoantenna.
Figure 4: Fluorescence decay lifetime measurements of single fluorescent molecules (SMs) enhanced by bowtie nanoantennas.

Similar content being viewed by others

References

  1. Chance, R. R., Prock, A. & Silbey, R. J. Molecular fluorescence and energy transfer near interfaces. Adv. Chem. Phys. 37, 1–65 (1978).

    Google Scholar 

  2. Muhlschlegel, P., Eisler, H., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    Article  ADS  Google Scholar 

  3. Fischer, H. & Martin, O. J. P. Engineering the optical reponse of plasmonic nanoantennas. Opt. Express 16, 9144–9154 (2008).

    Article  ADS  Google Scholar 

  4. Grober, R. D., Schoelkopf, R. J. & Prober, D. Optical antenna: towards a unity efficiency near-field optical probe. Appl. Phys. Lett. 70, 1354–1356 (1997).

    Article  ADS  Google Scholar 

  5. Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

    Article  ADS  Google Scholar 

  6. Hamann, H. F., Kuno, M., Gallagher, A. & Nesbitt, D. J. Molecular fluorescence in the vicinity of a nanoscopic probe. J. Chem. Phys. 114, 8596–8609 (2001).

    Article  ADS  Google Scholar 

  7. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).

    Article  ADS  Google Scholar 

  8. Kuhn, S., Hakanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

    Article  ADS  Google Scholar 

  9. Schuck, P. J., Fromm, D. P., Sundaramurthy, A., Kino, G. S. & Moerner, W. E. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402 (2005).

    Article  ADS  Google Scholar 

  10. Farahani, J. N., Pohl, D. W., Eisler, H. & Hecht, B. Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys. Rev. Lett. 95, 017402 (2005).

    Article  ADS  Google Scholar 

  11. Farahani, J. N. et al. Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy. Nanotechnology 18, 125506 (2007).

    Article  ADS  Google Scholar 

  12. Tam, F., Goodrich, G. P., Johnson, B. R. & Halas, N. J. Plasmonic enhancement of molecular fluorescence. Nano Lett. 7, 496–501 (2007).

    Article  ADS  Google Scholar 

  13. Taminiau, T. H., Stefani, F. D., Segerink, F. B. & van Hulst, N. Optical antennas direct single-molecule emission. Nature Photon. 2, 234–237 (2008).

    Article  Google Scholar 

  14. Zhang, J., Fu, Y., Chowdhury, M. H. & Lakowicz, J. R. Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles. Nano Lett. 7, 2101–2107 (2007).

    Article  ADS  Google Scholar 

  15. Bakker, R. M. et al. Enhanced localized fluorescence in plasmonic nanoantennae. Appl. Phys. Lett. 92, 043101 (2008).

    Article  ADS  Google Scholar 

  16. Muskens, O. L., Giannini, V., Sanchez-Gil, J. A. & Gomez Rivas, J. Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. Nano Lett. 7, 2871–2875 (2007).

    Article  ADS  Google Scholar 

  17. Brolo, A. G. et al. Surface plasmon-quantum dot coupling from arrays of nanoholes. J. Phys. Chem. B 110, 8307–8313 (2006).

    Article  Google Scholar 

  18. Gerard, D. et al. Nanoaperture-enhanced fluorescence: towards higher detection rates with plasmonic metals. Phys. Rev. B 77, 045413 (2008).

    Article  ADS  Google Scholar 

  19. Ringler, M. et al. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys. Rev. Lett. 100, 203002 (2008).

    Article  ADS  Google Scholar 

  20. Bek, A. et al. Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches. Nano Lett. 8, 485–490 (2008).

    Article  ADS  Google Scholar 

  21. Song, J. H., Atay, T., Shi, S. F., Urabe, H. & Nurmikko, A. V. Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons. Nano Lett. 5, 1557–1561 (2005).

    Article  ADS  Google Scholar 

  22. Chen, Y., Munechika, K. & Ginger, D. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett. 7, 690–696 (2007).

    Article  ADS  Google Scholar 

  23. Ruppin, R. Decay of an excited molecule near a small metal sphere. J. Chem. Phys. 76, 1681–1683 (1982).

    Article  ADS  Google Scholar 

  24. Rogobete, L., Kaminski, F., Agio, M. & Sandoghdar, V. Design of plasmonic nanoantennae for enhancing spontaneous emission. Opt. Lett. 32, 1623–1625 (2007).

    Article  ADS  Google Scholar 

  25. Khurgin, J. B., Sun, G. & Soref, R. A. Practical limits of absorption enhancement near metal nanoparticles. Appl. Phys. Lett. 94, 071103 (2009).

    Article  ADS  Google Scholar 

  26. Sun, G., Khurgin, J. B. & Soref, R. A. Practical enhancement of photoluminescence by metal nanoparticles. Appl. Phys. Lett. 94, 101103 (2009).

    Article  ADS  Google Scholar 

  27. Palik, E. D. Handbook of Optical Constants (Academic Press, 1985).

    Google Scholar 

  28. Han, M., Dutton, R. W. & Fan, S. Model dispersive media in finite-difference time-domain method with complex-conjugate pole–residue pairs. IEEE Microw. Wireless Comp. Lett. 16, 119–121 (2006).

    Article  Google Scholar 

  29. Lounis, B. & Moerner, W. E. Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000).

    Article  ADS  Google Scholar 

  30. Fromm, D. P., Sundaramurthy, A., Schuck, P. J., Kino, G. S. & Moerner, W. E. Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible. Nano Lett. 4, 957–961 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Science Foundation (NSF) grant DMR-0507296 and by Center for Probing the Nanoscale (CPN) through NSF grant PHY-0425897 (W.E.M.) and by an Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) program no. FA9550-04-1-0437 (S.F.). Work was performed in part at the Stanford Nanofabrication Facility supported by NSF grant ECS-9731293.

Author information

Authors and Affiliations

Authors

Contributions

A.K. and W.M. performed experiments and data analysis of experimental data. Z.Y. and S.F. simulated bowtie nanoantennas using FDTD. Y.A. and K.M. synthesized the TPQDI fluorophore.

Corresponding author

Correspondence to W. E. Moerner.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinkhabwala, A., Yu, Z., Fan, S. et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photon 3, 654–657 (2009). https://doi.org/10.1038/nphoton.2009.187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.187

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing