Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The distribution of glass-transition temperatures in nanoscopically confined glass formers

Abstract

Despite the decade-long study of the effect of nanoconfinement on the glass-transition temperature (Tg) of amorphous materials, the quest to probe the distribution of Tgs in nanoconfined glass formers has remained unfulfilled. Here the distribution of Tgs across polystyrene films has been obtained by a fluorescence/multilayer method, revealing that the enhancement of dynamics at a surface affects Tg several tens of nanometres into the film. The extent to which dynamics smoothly transition from enhanced to bulk states depends strongly on nanoconfinement. When polymer films are sufficiently thin that a reduction in thickness leads to a reduction in overall Tg, the surface-layer Tg actually increases with a reduction in overall thickness, whereas the substrate-layer Tg decreases. These results indicate that the gradient in Tg dynamics is not abrupt, and that the size of a cooperatively rearranging region is much smaller than the distance over which interfacial effects propagate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tg of single-layer PS films identified by fluorescence using pyrene as dopant or label.
Figure 2
Figure 3: Tg identified by fluorescence for 14-nm-thick pyrene-labelled PS free-surface layers (diamonds) as a function of total film thickness where the underlayer thickness is varied.
Figure 4: Tg identified by fluorescence for a three-layer PS film (each layer 12-nm thick, only one pyrene-labelled layer).
Figure 5: Summary of TgTg(bulk) for single pyrene-labelled PS layers inserted at specific locations in unlabelled PS films.

Similar content being viewed by others

References

  1. Angell, C.A., Ngai, K.L., McKenna, G.B., McMillan, P.F. & Martin, S.W. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 88, 3113–3157 (2000).

    Article  CAS  Google Scholar 

  2. Debenedetti, P.G. & Stillinger, F.H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article  CAS  Google Scholar 

  3. Sillescu, H. Heterogeneity at the glass transition: A review. J. Non-Cryst. Solids 243, 81–108 (1999).

    Article  CAS  Google Scholar 

  4. Jackson, C.L. & McKenna, G.B. The glass transition of organic liquids confined to small pores. J. Non-Cryst. Solids 131, 221–224 (1991).

    Article  Google Scholar 

  5. Reiter, G. Mobility of polymers in films thinner than their unperturbed size. Europhys. Lett. 23, 579–584 (1993).

    Article  CAS  Google Scholar 

  6. Keddie, J.L., Jones, R.A.L. & Cory, R.A. Size-dependent depression of the glass transition temperature in polymer films. Europhys. Lett. 27, 59–64 (1994).

    Article  CAS  Google Scholar 

  7. Forrest, J.A. & Dalnoki-Veress, K. The glass transition in thin polymer films. Adv. Coll. Interf. Sci. 94, 167–196 (2001).

    Article  CAS  Google Scholar 

  8. Adam, G. & Gibbs, J.H. On temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1965).

    Article  CAS  Google Scholar 

  9. Hempel, E., Hempel, H., Hensel, A., Schick, C. & Donth, E. Characteristic length of dynamic glass transition near Tg for a wide assortment of glass-forming substances. J. Phys. Chem. B 104, 2460–2466 (2000).

    Article  CAS  Google Scholar 

  10. Reinsberg, S.A., Qui, X.H., Wilhelm, M., Spiess, H.W. & Ediger, M.D. Length scale of dynamic heterogeneity in supercooled glycerol near Tg . J. Chem. Phys. 114, 7299–7302 (2001).

    Article  CAS  Google Scholar 

  11. Arndt, M., Stannarius, R., Groothues, H., Hempel, E. & Kremer, F. Length scale of cooperativity in the dynamic glass transition. Phys. Rev. Lett. 79, 2077–2080 (1997).

    Article  CAS  Google Scholar 

  12. Barut, G., Pissis, P., Petster, R. & Nimtz, G. Glass transition in liquids: Two versus three-dimensional confinement. Phys. Rev. Lett. 80, 3543–3546 (1998).

    Article  CAS  Google Scholar 

  13. Melnichenko, Y.B., Schuller, J., Richert, R., Ewen, B. & Long, C.K. Dynamics of hydrogen-bonded liquids confined to mesopores: A dielectric and neutron spectroscopy study. J. Chem. Phys. 103, 2016–2024 (1995).

    Article  CAS  Google Scholar 

  14. Schonhals, A., Goering, H. & Schick, C. Segmental and chain dynamics of polymers: From the bulk to the confined state. J. Non-Cryst. Solids 305, 140–149 (2002).

    Article  CAS  Google Scholar 

  15. Kawana, S. & Jones, R.A.L. Character of the glass transition in thin supported polymer films. Phys. Rev. E 63, 021501 (2001).

    Article  CAS  Google Scholar 

  16. van Zanten, J.H., Wallace, W.E. & Wu, W.L. Effect of strongly favorable substrate interactions on the thermal properties of ultrathin polymer films. Phys. Rev. E 53, R2053–R2056 (1996).

    Article  CAS  Google Scholar 

  17. Fukao, K. & Miyamoto, Y. Glass transitions and dynamics in thin polymer films: dielectric relaxation of thin films of polystyrene. Phys. Rev. E 61, 1743–1754 (2000).

    Article  CAS  Google Scholar 

  18. Forrest, J.A., Dalnoki-Veress, K., Stevens, J.R. & Dutcher, J.R. Effect of free surfaces on the glass transition temperature of thin polymer films. Phys. Rev. Lett. 77, 2002–2005 (1996).

    Article  CAS  Google Scholar 

  19. DeMaggio, G.B. et al. Interface and surface effects on the glass transition in thin polystyrene films. Phys. Rev. Lett. 78, 1524–1527 (1997).

    Article  CAS  Google Scholar 

  20. Long, D. & Lequeux, F. Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films. Eur. Phys. J. E 4, 371–387 (2001).

    Article  CAS  Google Scholar 

  21. de Gennes, P.G. Glass transitions in thin polymer films. Eur. Phys. J. E 2, 201–203 (2000).

    Article  CAS  Google Scholar 

  22. Dalnoki-Veress, K., Forrest, J.A., de Gennes, P.G. & Dutcher, J.R. Glass transition reductions in thin freely-standing polymer films: A scaling analysis of chain confinement effects. J. Phys. IV 10, 221–226 (2000).

    Google Scholar 

  23. Forrest, J.A. & Mattsson, J. Reductions of the glass transition temperature in thin polymer films: probing the length scale of cooperative dynamics. Phys. Rev. E 61, R53–R56 (2000).

    Article  CAS  Google Scholar 

  24. McCoy, J.D. & Curro, J.G. Conjectures on the glass transition of polymers in confined geometries. J. Chem. Phys. 116, 9154–9157 (2002).

    Article  CAS  Google Scholar 

  25. Torres, J.A., Nealey, P.F. & de Pablo, J.J. Molecular simulation of ultrathin polymeric films near the glass transition. Phys. Rev. Lett. 85, 3221–3224 (2000).

    Article  CAS  Google Scholar 

  26. Jones, R.A.L. Commentary to “Glass transitions in thin polymer films”. Eur.Phys. J. E 2, 205 (2000).

    CAS  Google Scholar 

  27. Hall, D.B., Underhill, P. & Torkelson, J.M. Spin coating of thin and ultrathin polymer films. Polym. Eng. Sci. 38, 2039–2045 (1998).

    Article  CAS  Google Scholar 

  28. Frank, C.W. et al. Structure in thin and ultrathin spin-cast polymer films. Science 273, 912–915 (1996).

    Article  CAS  Google Scholar 

  29. Hall, D.B., Hooker, J.C. & Torkelson, J.M. Ultrathin polymer films near the glass transition: Effect on the distribution of alpha-relaxation times as measured by second harmonic generation. Macromolecules 30, 667–669 (1997).

    Article  CAS  Google Scholar 

  30. Schwab, A.D., Agra, D.M.G., Kim, J.H., Kumar, S. & Dhinojwala, A. Surface dynamics in rubbed polymer thin films probed with optical birefringence measurements. Macromolecules 33, 4903–4909 (2000).

    Article  CAS  Google Scholar 

  31. Ellison, C.J., Hall, D.B., Kim, S.D. & Torkelson, J.M. Confinement and processing effects on glass transition temperature and physical aging in ultrathin polymer films: Novel fluorescence measurements. Eur. Phys. J. E 8, 155–165 (2002).

    Article  CAS  Google Scholar 

  32. Ellison, C.J. & Torkelson, J.M. Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labels. J. Polym. Sci. B 24, 2745–2758 (2002).

    Article  Google Scholar 

  33. Bell, R.C., Wang, H., Iedema, M.J. & Cowin, J.P. Nanometre-resolved interfacial fluidity. J. Am. Chem. Soc. 125, 5176–5185 (2003).

    Article  CAS  Google Scholar 

  34. Deschenes, L.A. & Vanden Bout, D.A. Single-molecule studies of heterogeneous dynamics in polymer melts near the glass transition. Science 292, 255–258 (2001).

    Article  CAS  Google Scholar 

  35. Quirin, J.C., Bartko, A.C., Dickson, R.M. & Torkelson, J.M. Signature of nanoscale dynamic heterogeneity in polymers near the glass transition: Non-gaussian displacement distribution from single-molecule probe diffusion studies. Polym. Preprints 42(2), 174–175 (2001).

    Google Scholar 

  36. Deppe, D.D., Dhinojwala, A. & Torkelson, J.M. Small molecule probe diffusion in thin polymer films near the glass transition: A novel approach using fluorescence nonradiative energy transfer. Macromolecules 29, 3898–3908 (1996).

    Article  CAS  Google Scholar 

  37. Hall, D.B., Dhinojwala, A. & Torkelson, J.M. Translation-rotation paradox for diffusion in glass-forming polymers: The role of the temperature dependence of the relaxation times distribution. Phys. Rev. Lett. 79, 103–106 (1997).

    Article  CAS  Google Scholar 

  38. Whitlow, S.J. & Wool, R.P. Diffusion of polymers at interfaces – a secondary ion mass-spectroscopy study. Macromolecules 24, 5926–5938 (1991).

    Article  CAS  Google Scholar 

  39. Frank, B., Gast, A.P., Russell, T.P., Brown, H.R. & Hawker, C. Polymer mobility in thin films. Macromolecules 29, 6531–6534 (1996).

    Article  CAS  Google Scholar 

  40. X. Zheng et al. Long-range effects on polymer diffusion induced by a bounding interface. Phys. Rev. Lett. 79, 241–244 (1997).

    Article  CAS  Google Scholar 

  41. Jean, Y.C. et al. Glass transition of polystyrene near the surface studied by slow-positron-annihilation spectroscopy. Phys. Rev. B 56, R8459–R8462 (1997).

    Article  CAS  Google Scholar 

  42. Agra, D.M.G., Schwab, A.D., Kim, J.H., Kumar, S. & Dhinojwala, A. Relaxation dynamics of rubbed polystyrene thin films. Europhys. Lett. 51, 655–660 (2000).

    Article  CAS  Google Scholar 

  43. Wallace, W.E., Fischer, D.A., Efimenko, K., Wu, W.L. & Genzer, J. Polymer chain relaxation: Surface outpaces bulk. Macromolecules 34, 5081–5082 (2001).

    Article  CAS  Google Scholar 

  44. Liu, Y. et al. Surface relaxations in polymers. Macromolecules 30, 7768–7771 (1997).

    Article  CAS  Google Scholar 

  45. Glotzer, S.C. Spatially heterogeneous dynamics in liquids: insights from simulation. J. Non-Cryst. Solids 274, 342–355 (2000).

    Article  CAS  Google Scholar 

  46. Weeks, E.R., Crocker, J.C., Levitt, A.C., Schofield, A. & Weitz, D.A. Three-dimensional imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000).

    Article  CAS  Google Scholar 

  47. Yu, C.J., Richter, A.G., Datta, A., Durbin, M.K. & Dutta, P. Observation of molecular layering in thin liquid films using x-ray reflectivity. Phys. Rev. Lett. 82, 2336–2329 (1999).

    Google Scholar 

  48. Russel, E.V. & Israeloff, N.E. Direct observation of molecular cooperativity near the glass transition. Nature 408, 695–698 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Torkelson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellison, C., Torkelson, J. The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nature Mater 2, 695–700 (2003). https://doi.org/10.1038/nmat980

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat980

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing