Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte

An Erratum to this article was published on 01 July 2003

Abstract

Dye-sensitized nanocrystalline solar cells (DSC) have received considerable attention as a cost-effective alternative to conventional solar cells. One of the main factors that has hampered widespread practical use of DSC is the poor thermostability encountered so far with these devices. Here we show a DSC with unprecedented stable performance under both thermal stress and soaking with light, matching the durability criteria applied to silicon solar cells for outdoor applications. The cell uses the amphiphilic ruthenium sensitizer cis-RuLL′(SCN)2 (L = 4,4′-dicarboxylic acid-2,2′-bipyridine, L′ = 4,4′-dinonyl-2,2′-bipyridine) in conjunction with a quasi-solid-state polymer gel electrolyte, reaching an efficiency of >6% in full sunlight (air mass 1.5, 100 mW cm−2). A convenient and versatile new route is reported for the synthesis of the heteroleptic ruthenium complex, which plays a key role in achieving the high-temperature stability. Ultramicroelectrode voltammetric measurements show that the triiodide/iodide couple can perform charge transport freely in the polymer gel. The cell sustained heating for 1,000 h at 80 °C, maintaining 94% of its initial performance. The device also showed excellent stability under light soaking at 55 °C for 1,000 h in a solar simulator (100 mW cm−2) equipped with a ultraviolet filter. The present findings should foster widespread practical application of dye-sensitized solar cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plots of conductivity–temperature data in the VTF coordinates for the liquid and polymer gel electrolytes.
Figure 2: Steady-state voltammograms of the liquid and polymer gel electrolytes with a Pt ultramicroelectrode.
Figure 3: Typical photocurrent density–voltage characteristic of photovoltaic cells.
Figure 4: Normalized device efficiencies for cells with the liquid and polymer gel electrolytes.
Figure 5: Detail of device parameter variations for cells with polymer gel electrolyte during accelerated aging at 80 °C.
Figure 6: Transient absorbance decay kinetics of the oxidized state of Z-907 dye adsorbed on transparent TiO2 nanocrystalline films.

Similar content being viewed by others

Notes

  1. *In this article, the x axis of the inset in Fig. 1 was incorrectly shown to be 1,000/(T-To) (K-1), whereas it should be 1,000/T (K-1). There will be a print amendment in the July issue.

References

  1. O'Regan, B. & Grätzel, M. A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 ( 1991).

    Article  CAS  Google Scholar 

  2. Nazeeruddin, M.K. et al. Conversion of light to electricity by cis-X2-bis(2,2'-bipyridyl-4,4'-dicarboxalate)ruthenium(II) charge transfer sensitizers (X=Cl, Br, I, CN, and SCN) on nanocrystalline TiO2 electrodes. J. Am. Chem. Soc. 115, 6382–6390 ( 1993).

    Article  CAS  Google Scholar 

  3. Hagfeldt, A. & Grätzel, M. Molecular photovoltaics. Accounts Chem. Res. 33, 269–277 ( 2000).

    Article  CAS  Google Scholar 

  4. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 ( 2001).

    Article  Google Scholar 

  5. Nazeeruddin, M.K. et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 123, 1613–1624 ( 2001).

    Article  CAS  Google Scholar 

  6. Papageogiou, N. et al. The performance and stability of ambient temperature molten salts for solar cell applications. J. Electrochem. Soc. 143, 3009–3108 ( 1996).

    Google Scholar 

  7. Kohle, O. et al. The photovoltaic stability of bis(isothiocyanato)ruthenium(II)-bis-2,2'-bipyridine-4,4'-dicarboxylic acid and related sensitizers. Adv. Mater. 9, 904–906 ( 1997).

    Article  CAS  Google Scholar 

  8. Pettersson, H. & Gruszecki, T. Long-term stability of low-power dye-sensitised solar cells prepared by industrial methods. Solar Energy Mater. Solar Cells 70, 203–211 ( 2001).

    Article  CAS  Google Scholar 

  9. Kern, R. et al. Long-term stability of dye-sensitized solar cells for large area power applications. Opto-Electron. Rev. 8, 284–288 ( 2001).

    Article  Google Scholar 

  10. Hinsch, A. et al. Long-term stability of dye-sensitised solar cells. Prog. Photovoltaics 9, 425–438 ( 2001).

    Article  CAS  Google Scholar 

  11. Pettersson, H. et al. Manufacturing method for monolithic dye-sensitized solar cells permitting long-term stable low-power modules. Solar Energy Mater. Solar Cells 77, 405–413 ( 2003).

    Article  CAS  Google Scholar 

  12. Kay, A. & Grätzel, M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Mater. Solar Cells 44, 99–117 ( 1996).

    Article  CAS  Google Scholar 

  13. Saito, Y. et al. Application of poly(3,4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells. Chem. Lett. 1060–1061 ( 2002).

  14. Suzuki, K. et al. Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem. Lett. 32, 28–29 ( 2003).

    Article  CAS  Google Scholar 

  15. Oskam, G. et al. Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells. J. Phys. Chem. B 105, 6867–6873 ( 2001).

    Article  CAS  Google Scholar 

  16. Nusbaumer, H. et al. CoII(dbbip)22+ complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells. J. Phys. Chem. B 105, 10461–10464 ( 2001).

    Article  CAS  Google Scholar 

  17. Sapp, S.A. et al. Substituted polypyridine complexes of cobalt(II/III) as efficient electron transfer mediators in dye-sensitized solar cells. J. Am. Chem. Soc. 124, 11215–11222 ( 2002).

    Article  CAS  Google Scholar 

  18. Ferrere, S. & Gregg, B.A. Photosensitization of TiO2 by [FeII(2,2'-bipyridine-4,4'-dicarboxylic acid)2(CN)2]: band selective electron injection from ultra-short-lived excited states. J. Am. Chem. Soc. 120, 843–844 ( 1998).

    Article  CAS  Google Scholar 

  19. Hou, Y.-J. et al. Influence of the attaching group and substituted position in the photosensitization behavior of ruthenium polypyridyl complexes. Inorg. Chem. 38, 6320–6322 ( 1999).

    Article  CAS  Google Scholar 

  20. Monat, J.E. & McCusker, J.K. Femtosecond excited dynamics of an iron(II) polypyridyl solar cell sensitizer model. J. Am. Chem. Soc. 122, 4092–4097 ( 2000).

    Article  CAS  Google Scholar 

  21. Sauvé, G. et al. Dye sensitization of nanocrystalline titanium dioxide with osmium and ruthenium polypyridyl complexes. J. Phys. Chem. B 104, 6821–6836 ( 2000).

    Article  Google Scholar 

  22. Yanagida, M. et al. Dye-sensitized solar cells based on nanocrystalline TiO2 sensitized with a novel pyridylquinoline ruthenium(II) complex. New J. Chem. 26, 963–965 ( 2002).

    Article  CAS  Google Scholar 

  23. Li, X. et al. New peripherally-substituted naphthalocyanines: synthesis, characterization and evaluation in dye-sensitised photoelectrochemical solar cells. New J. Chem. 26, 1076–1080 ( 2002).

    Article  CAS  Google Scholar 

  24. He, J. et al. Modified phthalocyanines for efficient near-IR sensitisation of nanostructured TiO2 electrode. J. Am. Chem. Soc. 124, 4922–4932 ( 2002).

    Article  CAS  Google Scholar 

  25. Hara, K. et al. Novel polyene dyes for highly efficient dye-sensitized solar cells. Chem. Commun. 252–253 ( 2003).

  26. Kumara, G.R.A. et al. Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor. Langmuir 18, 10493–10495 ( 2002).

    Article  CAS  Google Scholar 

  27. O'Regan, B. et al. A solid-state dye-sensitized solar cell fabricated with pressure-treated P25-TiO2 and CuSCN: analysis of pore filling and IV characteristics. Chem. Mater. 14, 5023–5029 ( 2002).

    Article  CAS  Google Scholar 

  28. Krüger, J. et al. Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4 '-dicarboxy-2,2 ' bipyridine)-bis(isothiocyanato) ruthenium(II). Appl. Phys. Lett. 81, 367–369 ( 2002).

    Article  Google Scholar 

  29. Cao, F., Oskam, G. & Searson, P.C. A solid-state, dye-sensitized photoelectrochemical cell. J. Phys. Chem. 99, 17071–17073 ( 1995).

    Article  CAS  Google Scholar 

  30. Nogueira, A.F., Durrant, J.R. & De Paoli, M.A. Dye-sensitized nanocrystalline solar cells employing a polymer electrolyte. Adv. Mater. 13, 826–830 ( 2001).

    Article  CAS  Google Scholar 

  31. Kubo, W. et al. Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator. Chem. Commun. 374–375 ( 2002).

  32. Wang, P. et al. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem. Commun. 2972–2973 ( 2002).

  33. Wang, P. et al. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J. Am. Chem. Soc. 125, 1166–1167 ( 2003).

    Article  CAS  Google Scholar 

  34. Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 ( 2001).

    Article  CAS  Google Scholar 

  35. Zakeeruddin, S.M. et al. Design, synthesis, and application of amphiphilic ruthenium polypyridyl photosensitizers in solar cells based on nanocrystalline TiO2 films. Langmuir 18, 952–954 ( 2002).

    Article  CAS  Google Scholar 

  36. Kataoka, H. et al. Interactive effect of the polymer on carrier migration nature in the chemically cross-linked polymer gel electrolyte composed of poly(ethylene glycol) dimethacrylate. J. Phys. Chem. B 106, 12084–12087 ( 2002).

    Article  CAS  Google Scholar 

  37. Gu, G.Y. et al. 2-Methoxyethyl (methyl) carbonate-based electrolytes for Li-ion batteries. Electrochim. Acta 45, 3127–3139 ( 2000).

    Article  CAS  Google Scholar 

  38. Wightman, R.M & Wipf, D.O. in Electroanalytical Chemistry Vol. 15 (ed. Bard, A.J.) 283 (Marcel Dekker, New York, 1989).

    Google Scholar 

  39. Pelet, S., Moser, J.E & Grätzel, M. Cooperative effect of adsorbed cations and iodide on the interception of back electron transfer in the dye sensitization of nanocrystalline TiO2 . J. Phys. Chem. B 104, 1791–1795 ( 2000).

    Article  CAS  Google Scholar 

  40. Haque, S. et al. Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films. J. Phys. Chem. B 104, 538–547 ( 2000).

    Article  CAS  Google Scholar 

  41. Moser, J.E. et al. Comment on “Measurement of ultrafast photoinduced electron transfer from chemically anchored Ru-dye molecules into empty electronic states in a colloidal anatase TiO2 film”. J. Phys. Chem. B 102, 3649–3650 ( 1998).

    Article  CAS  Google Scholar 

  42. Bonhôte, P et al. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 35, 1168–1178 ( 1996).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Péchy, I. Exnar and P. Liska for fruitful discussions, T. Koyanagi (CCIC, Japan) for providing the 400 nm TiO2 particles and P. Comte for TiO2 film fabrication. The Swiss Science Foundation, Swiss Federal Office for Energy (OFEN) and the European Office of US Air Force under Contract No. F61775–00–C0003 have supported this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaik M. Zakeeruddin or Michael Grätzel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Zakeeruddin, S., Moser, J. et al. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Mater 2, 402–407 (2003). https://doi.org/10.1038/nmat904

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat904

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing