Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Biomolecular screening with encoded porous-silicon photonic crystals

Abstract

Strategies to encode or label small particles or beads for use in high-throughput screening and bioassay applications1 focus on either spatially differentiated, on-chip arrays2,3,4 or random distributions of encoded beads5,6. Attempts to encode large numbers of polymeric, metallic or glass beads in random arrays or in fluid suspension have used a variety of entities to provide coded elements (bits)—fluorescent molecules, molecules with specific vibrational signatures7,8, quantum dots9, or discrete metallic layers10. Here we report a method for optically encoding micrometre-sized nanostructured particles of porous silicon. We generate multilayered porous films in crystalline silicon using a periodic electrochemical etch. This results in photonic crystals with well-resolved and narrow optical reflectivity features, whose wavelengths are determined by the etching parameters11. Millions of possible codes can be prepared this way. Micrometre-sized particles are then produced by ultrasonic fracture12, mechanical grinding or by lithographic means. A simple antibody-based bioassay using fluorescently tagged proteins demonstrates the encoding strategy in biologically relevant media.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical microscope image of rugate-encoded porous-silicon particles photolithographically defined into 94-mm squares, 5 mm thick, on a silicon wafer.
Figure 2: Reflectivity spectra of 15 porous-silicon multilayered samples prepared using a sinusoidal etch (rugate photonic structure); see Methods for details.
Figure 3: Reflectivity spectra of porous silicon rugate particles etched with a single periodicity (bottom) and with three separate periodicities (top).
Figure 4: Fluorescence and optical reflectivity spectra (background correction applied) for two rugate-encoded particles.

References

  1. Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  CAS  Google Scholar 

  2. Harrison, D.J. et al. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261, 895–897 (1993).

    Article  CAS  Google Scholar 

  3. Heller, M.J. An active microelectronics device for multiplex DNA analysis. IEEE Eng. Med. Biol. 15, 100–104 (1996).

    Article  Google Scholar 

  4. Chee, M. et al. Accessing genetic information with high-density DNA arrays. Science 274, 610–614 (1996).

    Article  CAS  Google Scholar 

  5. Still, W.C. Discovery of sequence-selective peptide binding by synthetic receptors using encoded combinatorial libraries. Acc. Chem. Res. 29, 155–163 (1996).

    Article  CAS  Google Scholar 

  6. Ferguson, J.A., Boles, T.C., Adams, C.P. & Walt, D.R. A fiber-optic DNA biosensor microarray for the analysis of gene expression. Nature Biotechnol. 14, 1681–1684 (1996).

    Article  CAS  Google Scholar 

  7. Fenniri, H., Ding, L., Ribbe, A.E. & Zyrianov, Y. Barcoded resins: a new concept for polymer-supported combinatorial library self-deconvolution. J. Am. Chem. Soc. 123, 8151–8152 (2001).

    Article  CAS  Google Scholar 

  8. Fenniri, H. et al. Towards the DRED of resin-supported combinatorial libraries: a non-invasive methodology based on bead self-encoding and multispectral imaging. Angew. Chem. Int. Edn Engl. 39, 4483–4485 (2000).

    Article  CAS  Google Scholar 

  9. Chan, W.C.W. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    Article  CAS  Google Scholar 

  10. Nicewarner-Peña, S.R. et al. Submicrometer metallic barcodes. Science 294, 137–141 (2001).

    Article  Google Scholar 

  11. Thonissen, M. & Berger, M.G. in Properties of Porous Silicon Vol. 18. (ed. Canham, L.) 30–37 (Short Run, London, 1997).

    Google Scholar 

  12. Heinrich, J.L., Curtis, C.L., Credo, G.M., Kavanagh, K.L. & Sailor, M.J. Luminescent colloidal Si suspensions from porous Si. Science 255, 66–68 (1992).

    Article  CAS  Google Scholar 

  13. Halimaoui, A. in Properties of Porous Silicon Vol. 18 (ed. Canham, L.) 12–22 (Short Run, London, 1997).

    Google Scholar 

  14. Berger, M.G. et al. Dielectric filters made of porous silicon: advanced performance by oxidation and new layer structures. Thin Solid Films 297, 237–240 (1997).

    Article  CAS  Google Scholar 

  15. Cazzanelli, M., Vinegoni, C. & Pavesi, L. Temperature dependence of the photoluminescence of all-porous-silicon optical microcavities. J. Appl. Phys. 85, 1760–1764 (1999).

    Article  CAS  Google Scholar 

  16. Lehmann, V., Stengl, R., Reisinger, H., Detemple, R. & Theiss, W. Optical shortpass filters based on macroporous silicon. Appl. Phys. Lett. 78, 589–591 (2001).

    Article  CAS  Google Scholar 

  17. Mazzoleni, C. & Pavesi, L. Application to optical components of dielectric porous silicon multilayers. Appl. Phys. Lett. 67, 2983–2985 (1995).

    Article  CAS  Google Scholar 

  18. Pavesi, L. & Dubos, P. Random porous silicon multilayers: application to distributed Bragg reflectors and interferential Fabry-Perot filters. Semicond. Sci. Tech. 12, 570–575 (1997).

    Article  CAS  Google Scholar 

  19. Pellegrini, V., Tredicucci, A., Mazzoleni, C. & Pavesi, L. Enhanced optical properties in porous silicon microcavities. Phys. Rev. B 52, R14328–R14331 (1995).

    Article  CAS  Google Scholar 

  20. Snow, P.A., Squire, E.K., Russell, P.S.J. & Canham, L.T. Vapor sensing using the optical properties of porous silicon Bragg mirrors. J. Appl. Phys. 86, 1781–1784 (1999).

    Article  CAS  Google Scholar 

  21. Vincent, G. Optical properties of porous silicon superlattices. Appl. Phys. Lett. 64, 2367–2369 (1994).

    Article  CAS  Google Scholar 

  22. Zangooie, S., Schubert, M., Trimble, C., Thompson, D.W. & Woollam, J.A. Infrared ellipsometry characterization of porous silicon Bragg reflectors. Appl. Opt. 40, 906–912 (2001).

    Article  CAS  Google Scholar 

  23. Dancil, K.-P.S., Greiner, D.P. & Sailor, M.J. A porous silicon optical biosensor: detection of reversible binding of IgG to a protein A-modified surface. J. Am. Chem. Soc. 121, 7925–7930 (1999).

    Article  CAS  Google Scholar 

  24. Tinsley-Bown, A.M. et al. Tuning the pore size and surface chemistry of porous silicon for immunoassays. Phys. Status Solidi A 182, 547–553 (2000).

    Article  CAS  Google Scholar 

  25. Chan, S., Horner, S.R., Miller, B.L. & Fauchet, P.M. Identification of gram negative bacteria using nanoscale silicon microcavities. J. Am. Chem. Soc. 123, 11797–11798 (2001).

    Article  CAS  Google Scholar 

  26. Starodub, N.F., Fedorenko, L.L., Starodub, V.M., Dikij, S.P. & Svechnikov, S.V. Use of the silicon crystals photoluminescence to control immunocomplex formation. Sens. Actuators B 35, 44–47 (1996).

    Article  CAS  Google Scholar 

  27. Canham, L.T. et al. Derivatized porous silicon mirrors: implantable optical components with slow resorbability. Phys. Status Solidi A 182, 521–525 (2000).

    Article  CAS  Google Scholar 

  28. Reese, C.E., Baltusavich, M.E., Keim, J.P. & Asher, S.A. Development of an intelligent polymerized crystalline colloidal array colorimetric reagent. Anal. Chem. 73, 5038–5042 (2001).

    Article  CAS  Google Scholar 

  29. Hermanson, G.T. Bioconjugate Techniques (Academic, San Diego, 1996).

  30. Gerion, D. et al. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 105, 8861–8871 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Ruoslahti and T. Mustelin for discussions. This work was supported by the David and Lucile Packard Foundation, the National Science Foundation and the National Institute of Health. Correspondence and requests for materials should be addressed to M.J.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Sailor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cunin, F., Schmedake, T., Link, J. et al. Biomolecular screening with encoded porous-silicon photonic crystals. Nature Mater 1, 39–41 (2002). https://doi.org/10.1038/nmat702

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat702

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing