Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Length scales in alloy dissolution and measurement of absolute interfacial free energy

Abstract

De-alloying is the selective dissolution of one or more of the elemental components of an alloy. In binary alloys that exhibit complete solid solubility, de-alloying of the less noble component results in the formation of nanoporous metals, a materials class that has attracted attention for applications such as catalysis1, sensing2 and actuation3. In addition, the occurrence of de-alloying in metallic alloy systems under stress is known to result in stress-corrosion cracking4, a key failure mechanism in fossil fuel and nuclear plants5, ageing aircraft6, and also an important concern in the design of nuclear-waste storage containers7. Central to the design of corrosion-resistant alloys is the identification of a composition-dependent electrochemical critical potential, Vcrit, above which the current rises dramatically with potential, signalling the onset of bulk de-alloying8,9. Below Vcrit, the surface is passivated by the accumulation of up to several monolayers of the more noble component. The current understanding of the processes that control Vcrit is incomplete. Here, we report on de-alloying results of Ag/Au superlattices that clarify the role of pre-existing length scales in alloy dissolution. Our data motivated us to re-analyse existing data on critical potentials of Ag–Au alloys and develop a simple unifying picture that accounts for the compositional dependence of solid-solution alloy critical potentials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the Ag/Au multilayers.
Figure 2: (Vcrit+k T lnaAg) as a function of inverse length scale (reciprocal ångströms) for the Ag/Au multilayer (red) and Ag–Au alloys (black) (ref. 8).
Figure 3: Analysis of KMC results for the parameter (Vcrit+k T lnaAg) as a function of inverse length scale in the alloy.

Similar content being viewed by others

References

  1. Ding, Y., Chen, M. W. & Erlebacher, J. Metallic mesoporous nanocomposites for electrocatalysis. J. Am. Chem. Soc. 126, 6876–6877 (2004).

    Article  Google Scholar 

  2. Heida, M. et al. Ultrasensitive quartz crystal microbalance with porous gold electrodes. Appl. Phys. Lett. 84, 628–630 (2004).

    Article  Google Scholar 

  3. Kramer, D., Viswanath, R. N. & Weissmuller, J. Surface-stress induced macroscopic bending of nanoporous gold cantilevers. Nano Lett. 4, 793–796 (2004).

    Article  Google Scholar 

  4. Sieradzki, K. & Newman, R. C. Stress-corrosion cracking. J. Phys. Chem. Solids 48, 1101–1113 (1987).

    Article  Google Scholar 

  5. Deakin, J., Dong, Z., Lynch, B. & Newman, R. C. De-alloying of type 316-stainless steel in hot, concentrated sodium hydroxide solution. Corros. Sci. 46, 2117–2133 (2004).

    Article  Google Scholar 

  6. Vukmirovic, M. B., Dimitrov, N. & Sieradzki, K. De-alloying and corrosion of Al alloy 2024-T3. J. Electrochem. Soc. B 149, 428–439 (2002).

    Article  Google Scholar 

  7. Andresen, P. L., Young, L. M., Catlin, G. M., Emigh, P. W. & Gordon, G. M. Stress-corrosion-crack initiation and growth-rate studies on titanium grade 7 and Alloy 22 in concentrated groundwater. Metall. Mater. Trans. A 36, 1187–1198 (2005).

    Article  Google Scholar 

  8. Sieradzki, K., Movrin, D., McCall, C., Dimitrov, N. & Erlebacher, J. The de-alloying critical potential. J. Electrochem. Soc. B 149, 370–377 (2002).

    Article  Google Scholar 

  9. Renner, F. U., Stierle, A., Dosch, H., Kolb, D. M. & Zegenhagen, J. Initial corrosion observed on the atomic scale. Nature 439, 707–710 (2006).

    Article  Google Scholar 

  10. Erlebacher, J., Aziz, M. J., Karma, A., Dimitrov, N. & Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001).

    Article  Google Scholar 

  11. Erlebacher, J. & Sieradzki, K. Pattern formation during dealloying. Scripta Mater. 49, 991–996 (2003).

    Article  Google Scholar 

  12. Sieradzki, K. Curvature effects in alloy dissolution. J. Electrochem. Soc. 140, 2868–2872 (1993).

    Article  Google Scholar 

  13. Stauffer, D. & Aharony, A. Introduction to Percolation Theory 2nd edn (Taylor and Francis, London, 1991).

    Google Scholar 

  14. Wagner, K., Brankovic, S. R., Dimitrov, N. & Sieradzki, K. Dealloying below the critical potential. J. Electrochem. Soc. 144, 3545–3555 (1997).

    Article  Google Scholar 

  15. McCall, C., Dimitrov, N. & Sieradzki, K. Underpotential deposition on alloys. J. Electrochem. Soc. 148, E290–E293 (2001).

    Article  Google Scholar 

  16. Friesen, C., Dimitrov, N., Cammarata, R. C. & Sieradzki, K. Surface stress and the electrocapillarity of solid electrodes. Langmuir 17, 807–815 (2001).

    Article  Google Scholar 

  17. Wagner, C. & Engelhardt, G. Beiträge zur Kenntnis der thermodynamischen Aktivitäten in binären Legierungen. Z. Phys. Chem. A 159, 241–274 (1932).

    Google Scholar 

  18. Oriani, R. A. Thermodynamics of liquid Ag–Au and Au–Cu alloys and the question of strain energy in solid solutions. Acta Metall. 4, 15–25 (1956).

    Article  Google Scholar 

  19. Needs, R. J. & Mansfield, M. Calculations of the surface stress tensor and surface energy of the (111) surfaces of iridium, platinum and gold. J. Phys. Condens. Matter 1, 7555–7563 (1989).

    Article  Google Scholar 

  20. Feng, Y. J., Bohnen, K. P. & Chan, C. T. First-principles studies of Au(100)-hex reconstruction in an electrochemical environment. Phys. Rev. B 72, 125401 (2005).

    Article  Google Scholar 

  21. Jones, H. The surface energy of solid metals. Met. Sci. J. 5, 15–18 (1971).

    Article  Google Scholar 

  22. Tyson, W. R. & Miller, W. A. Surface free energies of solid metals: estimation from liquid surface tension measurements. Surf. Sci. 62, 267–276 (1977).

    Article  Google Scholar 

  23. Erlebacher, J. An atomistic description of dealloying, porosity evolution, the critical potential and rate-limiting behavior. J. Electrochem. Soc. C 151, 614–626 (2004).

    Article  Google Scholar 

  24. Dursun, A., Pugh, D. V. & Corcoran, S. G. Probing the dealloying critical potential. J. Electrochem. Soc. B 152, 65–72 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (DMR-0301007 and CTS-0304062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sieradzki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information, figures S1-S3 and supplementary references (PDF 238 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rugolo, J., Erlebacher, J. & Sieradzki, K. Length scales in alloy dissolution and measurement of absolute interfacial free energy. Nature Mater 5, 946–949 (2006). https://doi.org/10.1038/nmat1780

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1780

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing