Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

A bright future for organic field-effect transistors

Abstract

Field-effect transistors are emerging as useful device structures for efficient light generation from a variety of materials, including inorganic semiconductors, carbon nanotubes and organic thin films. In particular, organic light-emitting field-effect transistors are a new class of electro-optical devices that could provide a novel architecture to address open questions concerning charge-carrier recombination and light emission in organic materials. These devices have potential applications in optical communication systems, advanced display technology, solid-state lighting and electrically pumped organic lasers. Here, recent advances and future prospects of light-emitting field-effect transistors are explored, with particular emphasis on organic semiconductors and the role played by the material properties, device features and the active layer structure in determining the device performances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device structure (not to scale) of a carbon nanotube light-emitting transistor.
Figure 2: Schematic representation of the device structures and of the main optoelectronic processes occurring in an OLET and in an OLED.
Figure 3: Electrical characteristics and optoelectronic response of an ambipolar OLET.
Figure 4: Scheme of a light-emitting field-effect transistor based on a two-component layered architecture.

Similar content being viewed by others

References

  1. Malliaras, G. & Friend, R. H. An organic electronics primer. Phys. Today 58, 53–58 (2005).

    Article  CAS  Google Scholar 

  2. Shaheen, S. E. et al. 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841–843 (2001).

    Article  CAS  Google Scholar 

  3. Peumans, P., Uchida, S. & Forrest, S. R. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425, 158–162 (2003).

    Article  CAS  Google Scholar 

  4. Gundlach, D. J., Lin, Y. Y., Jackson, T. N., Nelson, S. F. & Schlom, D. G. Pentacene organic thin-film transistors—molecular ordering and mobility. IEEE Electron. Dev. Lett. 18, 87–89 (1997).

    Article  CAS  Google Scholar 

  5. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article  CAS  Google Scholar 

  6. Sirringhaus, H., Tessler, N. & Friend, R. H. Integrated optoelectronic devices based on conjugated polymers. Science 280, 1741–1744 (1998).

    Article  CAS  Google Scholar 

  7. Kuo, C. T. & Weng, S. Z. Integrated device based on conjugated oligoaniline. Polymers for Adv. Tech. 13, 753–758 (2002).

    Article  CAS  Google Scholar 

  8. Hepp, A. et al. Light-emitting field-effect transistor based on a tetracene thin film. Phys. Rev. Lett. 91, 157406 (2003).

    Article  Google Scholar 

  9. Rost, C. et al. Ambipolar light-emitting organic field-effect transistor. Appl. Phys. Lett. 85, 1613–1615 (2004).

    Article  CAS  Google Scholar 

  10. Cullis, A. G., Canham, L. T. & Calcott, P. D. J. The structural and luminescence properties of porous silicon. J. Appl. Phys. 82, 909–965 (1997).

    Article  CAS  Google Scholar 

  11. Walters, R. J., Bourianoff, G. I. & Atwater, H. A. Field-effect electroluminescence in silicon nanocrystals. Nature Mater. 4, 143–146 (2005).

    Article  CAS  Google Scholar 

  12. Feng, M., Holonyak, Jr, N. & Hafez, W. Light-emitting transistor: Light emission from InGaP/GaAs heterojunction bipolar transistors. Appl. Phys. Lett. 84, 151–153 (2004).

    Article  CAS  Google Scholar 

  13. Walters, G., Holonyak, N. Jr, Feng, M. & Chan, R. Laser operation of a heterojunction bipolar light-emitting transistor. Appl. Phys. Lett. 85, 4768–4770 (2004).

    Article  Google Scholar 

  14. Feng, M., Holonyak, N. Jr, Walters, G. & Chan, R. Room temperature continuous wave operation of a heterojunction bipolar transistor laser. Appl. Phys. Lett. 87, 131103 (2005).

    Article  Google Scholar 

  15. Duan, X., Huang, Y., Cui, Y., Wong, J. & Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001).

    Article  CAS  Google Scholar 

  16. Gudiksen, M. S., Lauhon, L. J., Wong, J., Smith, D. C. & Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002).

    Article  CAS  Google Scholar 

  17. Misewich, J. A. et al. Electrically induced optical emission from a carbon nanotube FET Science 300, 783–786 (2003).

    Article  CAS  Google Scholar 

  18. Derycke, V., Martel, R., Appenzeller, J. & Avouris, Ph. Carbon nanotube inter- and intramolecular logic gates. Nano Lett. 1, 453–456 (2001).

    Article  CAS  Google Scholar 

  19. Liu, X., Lee, C., Zhou, C. & Han, J. Carbon nanotube field-effect inverters. Appl. Phys. Lett. 79, 3329–3331 (2001).

    Article  CAS  Google Scholar 

  20. Bachtold, A., Hadley, P., Nakanishi, T. & Dekker, C. Logic circuits with carbon nanotube transistors. Science 294, 1317–1320 (2001).

    Article  CAS  Google Scholar 

  21. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes Science 298, 2361–2366 (2002).

    Article  CAS  Google Scholar 

  22. Barbarella, G., Melucci, M. & Sotgiu, G. The versatile thiophene: an overview of recent research on thiophene-based materials. Adv. Mater. 17, 1581–1593 (2005).

    Article  CAS  Google Scholar 

  23. Facchetti, A., Mushrush, M., Katz, H. E. & Marks, T. J. n-type building blocks for organic electronics: a homologous family of fluorocarbon-substituted thiophene oligomers with high carrier mobility. Adv. Mater. 15, 33–38 (2003).

    Article  CAS  Google Scholar 

  24. Furuta, P. T., Deng, L., Garon, S., Thompson, M. E. & Frechet, J. M. Platinum-functionalized random copolymers for use in solution-processible, efficient, near-white organic light-emitting diodes. J. Am. Chem. Soc. 126, 15388–15389 (2004).

    Article  CAS  Google Scholar 

  25. Yoon, M. H., DiBenedetto, S. A., Facchetti, A. & Marks, T. J. Organic thin-film transistors based on carbonyl-functionalized quaterthiophenes: high mobility n-channel semiconductors and ambipolar transport. J. Am. Chem. Soc. 127, 1348–1349 (2005).

    Article  CAS  Google Scholar 

  26. Dinelli, F. et al. Spatially correlated charge transport in organic thin film transistors. Phys. Rev. Lett. 92, 116802 (2004).

    Article  Google Scholar 

  27. Cicoira, F. et al. Morphology and field-effect-transistor mobility in tetracene thin films. Adv. Funct. Mater. 15, 375–380 (2005).

    Article  CAS  Google Scholar 

  28. Santato, C. et al. Tetracene-based organic light-emitting transistors: optoelectronic properties and electron injection mechanism. Synth. Metals 146, 329–334 (2004).

    Article  CAS  Google Scholar 

  29. Reynaert, J. et al. Ambipolar injection in a submicron-channel light-emitting tetracene transistor with distinct source and drain contacts. J. Appl. Phys. 97, 114501 (2005).

    Article  Google Scholar 

  30. Verlaak, S., Cheyns, D., Debucquoy, M., Arkhipov, V. & Heremans, P. Numerical simulation of tetracene light-emitting transistors: a detailed balance of exciton processes. Appl. Phys. Lett. 85, 2405–2407 (2004).

    Article  CAS  Google Scholar 

  31. Oyamada, T. et al. Electroluminescence of 2,4-bis(4-(2′-thiophene-yl) phenyl)thiophene in organic light-emitting field-effect transistors. Appl. Phys. Lett. 86, 093505 (2005).

    Article  Google Scholar 

  32. Oyamada, T. et al. Lateral organic light-emitting diode with field-effect transistor characteristics. J. Appl. Phys. 98, 074506 (2005).

    Article  Google Scholar 

  33. Ahles, M., Hepp, A., Schmechel, R. & von Seggern, H. Light emission from a polymer transistor. Appl. Phys. Lett. 84, 428–430 (2004).

    Article  CAS  Google Scholar 

  34. Sakanoue, T., Fujiwara, E., Yamada, R. & Tada, H. Visible light emission from polymer-based field-effect transistors. Appl. Phys. Lett. 84, 3037–3039 (2004).

    Article  CAS  Google Scholar 

  35. Swensen, J., Moses, D. & Heeger, A. J. Light emission in the channel region of a polymer thin-film transistor fabricated with gold and aluminum for the source and drain electrodes. Synth. Metals 153, 53–56 (2005).

    Article  CAS  Google Scholar 

  36. Cicoira, F. et al. Organic light-emitting transistors based on solution-cast and vacuum-sublimed films of a rigid core thiophene oligomer. Adv. Mater. 18, 169–174 (2006).

    Article  CAS  Google Scholar 

  37. Crone, B. et al. Large-scale complementary integrated circuits based on organic transistors Nature 403, 521–523 (2000).

    Article  CAS  Google Scholar 

  38. Meijer, E. J. et al. Solution-processed ambipolar organic field-effect transistors and inverters. Nature Mater. 2, 678–682 (2003).

    Article  CAS  Google Scholar 

  39. Freitag, M. et al. Mobile ambipolar domain in carbon-nanotube infrared emitters. Phys. Rev. Lett. 93, 076803 (2004).

    Article  Google Scholar 

  40. Karl, N. Charge carrier transport in organic semiconductors. Synth. Met. 133–134, 649–657 (2003).

    Article  Google Scholar 

  41. Dimitrakopoulos, C. D. & Malenfant, P. R. L. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002).

    Article  CAS  Google Scholar 

  42. Chesterfield, R. J. High electron mobility and ambipolar transport in organic thin-film transistors based on a π-stacking quinoidal terthiophene. Adv. Mater. 15, 1278–1282 (2003).

    Article  CAS  Google Scholar 

  43. Chua, L. L. et al. General observation of n-type field-effect behaviour in organic semiconductors. Nature 434, 194–199 (2005).

    Article  CAS  Google Scholar 

  44. Corcoran, N., Arias, A. C., Kim, J. S., MacKenzie, J. D. & Friend, R. H. Increased efficiency in vertically segregated thin-film conjugated polymer blends for light-emitting diodes. Appl. Phys. Lett. 82, 299–301 (2003).

    Article  CAS  Google Scholar 

  45. Alam, M. M., Tonzola, C. J. & Jenekhe, S. A. Nanophase-separated blends of acceptor and donor conjugated polymers. efficient electroluminescence from binary polyquinoline/poly(2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene) and polyquinoline/poly(3-octylthiophene) blends. Macromolecules 36, 6577–6587 (2003).

    Article  CAS  Google Scholar 

  46. Arias, A. C. et al. Photovoltaic performance and morphology of polyfluorene blends: a combined microscopic and photovoltaic investigation. Macromolecules 34, 6005–6013 (2001).

    Article  CAS  Google Scholar 

  47. Tada, K., Harada, H. & Yoshino, K. Polymeric bipolar thin-film transistor utilizing conducting polymer containing electron transport dye. Jpn J. Appl. Phys. 35, L944–L946 (1996).

    Article  CAS  Google Scholar 

  48. Melucci, M. et al. Multiscale self-organization of the organic semiconductor α-quinquethiophene. J. Am. Chem. Soc. 125, 10266–10274 (2003).

    Article  CAS  Google Scholar 

  49. Malenfant, P. R. L. et al. N-type organic thin-film transistor with high field-effect mobility based on a N,N′-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative. Appl. Phys. Lett. 80, 2517–2519 (2002).

    Article  CAS  Google Scholar 

  50. Loi, M. A. et al. Tuning optoelectronic properties of ambipolar organic light- emitting transistors using a bulk-heterojunction approach. Adv. Funct. Mater. 16, 41–47 (2006).

    Article  CAS  Google Scholar 

  51. Dinelli, F. et al. High-mobility ambipolar transport in organic light-emitting transistors. Adv. Mater. 18, 1416–1420 (2006).

    Article  CAS  Google Scholar 

  52. Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. Appl. Phys. Lett. 87, 253511 (2005).

    Article  Google Scholar 

  53. Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nature Mater. 5, 69–74 (2006).

    Article  CAS  Google Scholar 

  54. Singh, Th. B. et al. High-performance ambipolar pentacene organic field-effect transistors on poly(vinyl alcohol) organic gate dielectric. Adv. Mater. 17, 2315–2320 (2005).

    Article  CAS  Google Scholar 

  55. Tessler, N. et al. Pulsed excitation of low-mobility light-emitting diodes: Implication for organic lasers. Appl. Phys. Lett. 74, 2764–2766 (1999).

    Article  CAS  Google Scholar 

  56. Baldo, M. A., Holmes, R. J. & Forrest, S. R. Prospects for electrically pumped organic lasers. Phys. Rev. B 66, 035321 (2002).

    Article  Google Scholar 

  57. Santato, C. et al. Tetracene light-emitting transistors on flexible plastic substrates. Appl. Phys. Lett. 86, 141106 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The author is indebted to many co-workers for the extensive work and exciting discussions on the topic of OLETs. Special thanks go to R. Zamboni, R. Capelli, M. Murgia, F. Dinelli, M. A. Loi, C. Santato, F. Cicoira, F. Todescato, S. Toffanin, C. Rost, S. F. Karg, W. Riess, A. Facchetti, T.J. Marks. Financial support from Italian MIUR project FIRB–RBNE033KMA and EU project FP6-IST-015034 OLAS is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muccini, M. A bright future for organic field-effect transistors. Nature Mater 5, 605–613 (2006). https://doi.org/10.1038/nmat1699

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1699

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing