Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Programmable polymer thin film and non-volatile memory device

Abstract

Building on the success of organic electronic devices, such as light-emitting diodes and field-effect transistors, procedures for fabricating non-volatile organic memory devices are now being explored. Here, we demonstrate a novel organic memory device fabricated by solution processing. Programmable electrical bistability was observed in a device made from a polystyrene film containing gold nanoparticles and 8-hydroxyquinoline sandwiched between two metal electrodes. The as-prepared device, which is in a low-conductivity state, displays an abrupt transition to a high-conductivity state under an external bias of 2.8 V. These two states differ in conductivity by about four orders of magnitude. Applying a negative bias of 1.8 V causes the device to return to the low-conductivity state. The electronic transition is attributed to the electric-field-induced charge transfer between the gold nanoparticles and 8-hydroxyquinoline. The transition from the low- to the high-conductivity state takes place in nanoseconds, and is non-volatile, indicating that the device may be used for low-cost, high-density memory storage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current–voltage curve (a) and device structure (b) for a device of structure Al/Au−DT+8HQ+PS/Al.
Figure 2: Write–read–erase cycles of device Al/Au−DT+8HQ+PS/Al.
Figure 3: Arrhenius plot of temperature dependence of current for Al/Au−DT+8HQ+PS/Al in the high-conductivity state.
Figure 4: Current–voltage curve of the device Al/Au−DT+8HQ+PS/Al in the high-conductivity state.
Figure 5: Scanning surface potential AFM image of Au−DT+8HQ+PS film with aluminium as bottom electrode and silicon wafer as substrate.
Figure 6

Similar content being viewed by others

References

  1. Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).

    Article  CAS  Google Scholar 

  2. Tang, C. W. & Vanslyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).

    Article  CAS  Google Scholar 

  3. Sariciftci, N. S., Smilowitz, L., Heeger, A. J. & Wudl, F. Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene. Sciene 258, 1474–1476 (1992).

    Article  CAS  Google Scholar 

  4. Dimitrakopoulos, C. D. & Mascaro, D. J. Organic thin-film transistors: A review of recent advances. IBM J. Res. Dev. 45, 11–27 (2001).

    Article  CAS  Google Scholar 

  5. Furukawa, T. Structure and functional properties of ferroelectric polymer. Adv. Colloid Interface Sci. 71–72, 183–208 (1997).

    Article  Google Scholar 

  6. Potember, R. S., Poehler, T. O. & Benson, R. C. Electrical switching and memory phenomena in Cu-TCNQ thin films. Appl. Phys. Lett. 34, 405–407 (1982).

    Article  Google Scholar 

  7. Oyamada, T., Tanaka, H., Matsushige, K., Sasabe, H. & Adachi, C. Switching effect in Cu:TCNQ charge transfer-complex thin films by vacuum codeposition. Appl. Phys. Lett. 83, 1252–1254 (2003).

    Article  CAS  Google Scholar 

  8. Ma, L. P., Liu, J. & Yang, Y. Organic electrical bistable devices and rewritable memory cells. Appl. Phys. Lett. 80, 2997–2999 (2002).

    Article  CAS  Google Scholar 

  9. Ma, L. P., Pyo, S., Ouyang, J., Xu, Q. F. & Yang, Y. Nonvolatile electrical bistability of organic/metal-nanocluster/organic system. Appl. Phys. Lett. 82, 1419–1421 (2003).

    Article  CAS  Google Scholar 

  10. Bozano, L. D., Kean, B. W., Deline, V. R., Salem, J. R. & Scott, J. C. Mechanism for bistability in organic memory elements. Appl. Phys. Lett. 84, 607–609 (2004).

    Article  CAS  Google Scholar 

  11. Möller, S., Perlov, C., Jackson, W., Taussig, C. & Forrest, S. F. A polymer/semiconductor write-once read-many-times memory. Nature 426, 166–169 (2003).

    Article  Google Scholar 

  12. Chen, Y. et al. Nanoscale molecular-switch devices fabricated by imprint lithography. Appl. Phys. Lett. 82, 1610–1612 (2003).

    Article  CAS  Google Scholar 

  13. Tsujioka, T. & Kondo, H. Organic bistable molecular memory using photochromic diarylethene. Appl. Phys. Lett. 83, 937–939 (2003).

    Article  CAS  Google Scholar 

  14. Henish, H. K. & Smith, W. R. Switching in organic polymer films. Appl. Phys. Lett. 24, 589–591 (1974).

    Article  Google Scholar 

  15. Segui, Y., Ai, B. & Carchano, H. Switching in polystyrene films: Transition from on to off state. J. Appl. Phys. 47, 140–143 (1976).

    Article  CAS  Google Scholar 

  16. Wang, W., Lee, T. & Reed, M. A. Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys. Rev. B 68, 035416 (2003).

    Article  Google Scholar 

  17. Prout, C. K. & Wheeler, A. G. Molecular complexes. Part VII. The crystal and molecular structure of the 8-hydroxyquinoline chloranil complex. J. Chem. Soc. A 469–475 (1967).

  18. Castellano E. & Prout C. K. Molecular complexes. Part X. The crystal and molecule structure of the 1:1 complex of 8-hydroxyquinoline and 1,3,5-trinitrobenzene. J. Chem. Soc. A, 550–553 (1971).

  19. Adams, D. M. et al. Charge transfer on the nanoscale: current status. J. Phys. Chem. B 107, 6668–6697 (2003).

    Article  CAS  Google Scholar 

  20. Ipe, B. I., Thomas, K. G., Barazzouk, S., Hotchandani, S. & Kamat, P. V. Photoinduced charge separation in a fluorophore–gold nanoassembly. J. Phys. Chem. B 106, 18–21 (2002).

    Article  CAS  Google Scholar 

  21. Oyamada T., Tanaka, H., Matsushige, K., Sasabe, H. & Adachi, C. Switching effect in CU: TCNQ charge transfer-complex thin films by vacuum codeposition. Appl. Phys. Lett. 83, 1252–1254 (2003).

    Article  CAS  Google Scholar 

  22. Mo, X.-L. et al. Preparation and electrical/optical bistable property of potassium tetracyanoquinodimethane thin films. Thin Solid Films 436, 259–263 (2003).

    Article  CAS  Google Scholar 

  23. Chen, S. et al. Gold nanoelectrodes of varied size: transition to molecule-like charging. Science 280, 2098–2101 (1998).

    Article  CAS  Google Scholar 

  24. Hicks, J. F. et al. The monolayer thickness dependence of quantized double-layer capacitances of monolayer-protected gold clusters. Anal. Chem. 71, 3703–3711 (1999).

    Article  CAS  Google Scholar 

  25. Hostetler, M. J. et al. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14, 17–30 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Sievers for calculating the HOMO–LUMO levels of 8HQ and writing the program for the write–read–erase cycle measurement. This work is financially supported by the Air Force Office of Scientific Research (grant no. FA9550-04-0215, programme manager Y-C Lee).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouyang, J., Chu, CW., Szmanda, C. et al. Programmable polymer thin film and non-volatile memory device. Nature Mater 3, 918–922 (2004). https://doi.org/10.1038/nmat1269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1269

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing