Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultra-large-scale syntheses of monodisperse nanocrystals

Abstract

The development of nanocrystals has been intensively pursued, not only for their fundamental scientific interest, but also for many technological applications1,2,3. The synthesis of monodisperse nanocrystals (size variation <5%) is of key importance, because the properties of these nanocrystals depend strongly on their dimensions. For example, the colour sharpness of semiconductor nanocrystal-based optical devices is strongly dependent on the uniformity of the nanocrystals3,4,5,6, and monodisperse magnetic nanocrystals are critical for the next-generation multi-terabit magnetic storage media7,8,9. For these monodisperse nanocrystals to be used, an economical mass-production method needs to be developed. Unfortunately, however, in most syntheses reported so far, only sub-gram quantities of monodisperse nanocrystals were produced. Uniform-sized nanocrystals of CdSe (refs 10,11) and Au (refs 12,13) have been produced using colloidal chemical synthetic procedures. In addition, monodisperse magnetic nanocrystals such as Fe (refs 14,15), Co (refs 1618), γ-Fe2O3 (refs 19,20), and Fe3O4 (refs 21,22) have been synthesized by using various synthetic methods23. Here, we report on the ultra-large-scale synthesis of monodisperse nanocrystals using inexpensive and non-toxic metal salts as reactants. We were able to synthesize as much as 40 g of monodisperse nanocrystals in a single reaction, without a size-sorting process. Moreover, the particle size could be controlled simply by varying the experimental conditions. The current synthetic procedure is very general and nanocrystals of many transition metal oxides were successfully synthesized using a very similar procedure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The overall scheme for the ultra-large-scale synthesis of monodisperse nanocrystals.
Figure 2: 12-nm magnetite nanocrystals.
Figure 3: TEM images (a–e) and HRTEM images (f–j) of monodisperse iron oxide nanocrystals.
Figure 4: Characterization of monodisperse iron oxide nanocrystals.
Figure 5: TEM images, HRTEM images and electron diffraction patterns of monodisperse nanocrystals.

Similar content being viewed by others

References

  1. Schmid, G. Nanoparticles: From Theory to Application (Wiley-VCH, Weinheim, 2004).

    Google Scholar 

  2. Klabunde, K. J. Nanoscale Materials in Chemistry (Wiley-Interscience, New York, 2001).

    Book  Google Scholar 

  3. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  CAS  Google Scholar 

  4. Nirmal, M. & Brus, L. Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res. 32, 407–414 (1999).

    Article  CAS  Google Scholar 

  5. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    Article  CAS  Google Scholar 

  6. Rogach, A. L. et al. Organization of matter on different size scales: monodisperse nanocrystals and their superstructures. Adv. Funct. Mater. 12, 653–664 (2002).

    Article  CAS  Google Scholar 

  7. Sun, S., Murray, C. B. Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000).

    Article  CAS  Google Scholar 

  8. Speliotis, D. E. Magnetic recording beyond the first 100 (invited). J. Magn. Magn. Mater. 193, 29–35 (1999).

    Article  CAS  Google Scholar 

  9. O'Handley, R. C. Modern Magnetic Materials (Wiley, New York, 1999).

    Google Scholar 

  10. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  11. Peng, X., Wickham, J. & Alivisatos, A. P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J. Am. Chem. Soc. 120, 5343–5344 (1998).

    Article  CAS  Google Scholar 

  12. Stoeva, S., Klabunde, K. J., Sorensen, C. M. & Dragieva, I. Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. J. Am. Chem. Soc. 124, 2305–2311 (2002).

    Article  CAS  Google Scholar 

  13. Jana, N. R. & Peng, X. Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. J. Am. Chem. Soc. 125, 14280–14281 (2003).

    Article  CAS  Google Scholar 

  14. Park, S.-J. et al. Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J. Am. Chem. Soc. 112, 8581–8582 (2000).

    Article  Google Scholar 

  15. Dumestre, F., Chaudret, B. Amiens, C., Renaud, P. & Fejes, P. Superlattices of iron nanocubes synthesized from Fe[N(SiMe3)2]2 . Science 303, 821–823 (2004).

    Article  CAS  Google Scholar 

  16. Sun, S. & Murray, C. B. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited). J. Appl. Phys. 85, 4325–4390 (1999).

    Article  CAS  Google Scholar 

  17. Puntes, V. F., Krishnan, K. M. & Alivisatos, A. P. Colloidal nanocrystal shape and size control: the case of cobalt. Science 291, 2115–2117 (2001).

    Article  CAS  Google Scholar 

  18. Dumestre, F. et al. Shape control of thermodynamically stable cobalt nanorods through organometallic chemistry. Angew. Chem. Int. Edn 41, 4286–4289 (2002).

    Article  CAS  Google Scholar 

  19. Hyeon, T., Lee, S. S., Park, J., Chung, Y. & Na, H. B. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 123, 12798–12801 (2001).

    Article  CAS  Google Scholar 

  20. Rockenberger, J., Scher, E. C. & Alivisatos, A. P. A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J. Am. Chem. Soc. 121, 11595–11596 (1999).

    Article  CAS  Google Scholar 

  21. Sun, S. et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126, 273–279 (2004).

    Article  CAS  Google Scholar 

  22. Pileni, M. P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Mater. 2, 145–150 (2003).

    Article  CAS  Google Scholar 

  23. Hyeon, T. Chemical synthesis of magnetic nanoparticles. Chem. Comm. 927–934 (2003).

  24. Sugimoto, T. Monodispersed Particles (Elsevier Science, Amsterdam, 2001).

    Google Scholar 

  25. Kim, S. W. et al. Synthesis of monodisperse palladium nanoparticles. Nano Lett. 3, 1289–1291 (2003).

    Article  CAS  Google Scholar 

  26. Hyeon, T. et al. Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals. J. Phys. Chem. B 106, 6831–6833 (2002).

    Article  CAS  Google Scholar 

  27. Joo, J. et al. Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. J. Am. Chem. Soc. 125, 6553–6557 (2003).

    Article  CAS  Google Scholar 

  28. Joo, J. et al. Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. J. Am. Chem. Soc. 125, 11100–11105 (2003).

    Article  CAS  Google Scholar 

  29. Peng, X. Green chemical approaches toward high-quality semiconductor nanocrystals. Chem. Eur. J. 8, 334–339 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

T.H. would like to thank the financial support from the Korean Ministry of Science and Technology through the National Creative Research Initiative Program. J.G.P. would like to thank the financial support by the KOSEF through the Center for Strongly Correlated Materials Research at the Seoul National University. J.H.P. would like to thank the financial support by KISTEP through X-ray/particle-beam Nanocharacterization Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taeghwan Hyeon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J., An, K., Hwang, Y. et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Mater 3, 891–895 (2004). https://doi.org/10.1038/nmat1251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing