Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis

Abstract

Periprosthetic osteolysis—bone loss in the vicinity of a prosthesis—is the most serious problem limiting the longevity of artificial joints. It is caused by bone-resorptive responses to wear particles originating from the articulating surface. This study investigated the effects of graft polymerization of our original biocompatible phospholipid polymer 2-methacryloyloxyethyl phosphorylcholine (MPC) onto the polyethylene surface. Mechanical studies using a hip-joint simulator revealed that the MPC grafting markedly decreased the friction and the amount of wear. Osteoclastic bone resorption induced by subperiosteal injection of particles onto mouse calvariae was abolished by the MPC grafting on particles. MPC-grafted particles were shown to be biologically inert by culture systems with respect to phagocytosis and resorptive cytokine secretion by macrophages, subsequent expression of receptor activator of NF-κB ligand in osteoblasts, and osteoclastogenesis from bone marrow cells. From the mechanical and biological advantages, we believe that our approach will make a major improvement in artificial joints by preventing periprosthetic osteolysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surface analyses of the MPC grafted PE.
Figure 2: The friction torque and the wear amount in the hip-joint simulator with three kinds of PE liners.
Figure 3: Optical findings of the surfaces of liners and corresponding femoral heads.
Figure 4: In vivo bone resorption in mouse calvariae.
Figure 5: Bone-resorptive responses in cultures exposed to PS particles with and without the MPC grafting (MPC-PS and PS, respectively).

Similar content being viewed by others

References

  1. Harris, W. H. Wear and periprosthetic osteolysis: the problem. Clin. Orthop. 393, 66–70 (2001).

    Article  Google Scholar 

  2. Jacobs, J. J., Roebuck, K. A., Archibeck, M., Hallab, N. J. & Glant, T. T. Osteolysis: basic science. Clin. Orthop. 393, 71–77 (2001).

    Article  Google Scholar 

  3. Connelly, G. M., Rimnac, C. M., Wright, T. M., Hertzberg, R. W. & Manson, J. A. Fatigue crack propagation behavior of ultrahigh molecular weight polyethylene. J. Orthop. Res. 2, 119–125 (1984).

    Article  CAS  Google Scholar 

  4. von Knoch, M. et al. The effectiveness of polyethylene versus titanium particles in inducing osteolysis in vivo. J. Orthop. Res. 22, 237–243 (2004).

    Article  CAS  Google Scholar 

  5. Maloney, W. J. et al. Isolation and characterization of wear particles generated in patients who have had failure of a hip arthroplasty without cement. J. Bone Joint Surg. Am. 77, 1301–1310 (1995).

    Article  CAS  Google Scholar 

  6. Glant, T. T. et al. Bone resorption activity of particulate-stimulated macrophages. J. Bone Miner. Res. 8, 1071–1079 (1993).

    Article  CAS  Google Scholar 

  7. Childs, L. M. et al. In vivo RANK signaling blockade using the receptor activator of NF-κB:Fc effectively prevents and ameliorates wear debris-induced osteolysis via osteoclast depletion without inhibiting osteogenesis. J. Bone Miner. Res. 17, 192–199 (2002).

    Article  CAS  Google Scholar 

  8. Goater, J. J., O'Keefe, R. J., Rosier, R. N., Puzas, J. E. & Schwarz, E. M. Efficacy of ex vivo OPG gene therapy in preventing wear debris induced osteolysis. J. Orthop. Res. 20, 169–173 (2002).

    Article  CAS  Google Scholar 

  9. Ishihara, K., Ueda, T. & Nakabayashi, N. Preparation of phospholipid polymers and their properties as polymer hydrogel membrane. Polym. J. 22, 355–360 (1990).

    Article  CAS  Google Scholar 

  10. Ishihara, K., Shinozuka, T., Hanazaki, Y., Iwasaki, Y. & Nakabayashi, N. Improvement of blood compatibility on cellulose hemodialysis membrane: IV. Phospholipid polymer bonded to the membrane surface. J. Biomater. Sci. Polym. Edn 10, 271–282 (1999).

    Article  CAS  Google Scholar 

  11. Yoneyama, T., Sugihara, K., Ishihara, K., Iwasaki, Y. & Nakabayashi, N. The vascular prosthesis without pseudointima prepared by antithrombogenic phospholipid polymer. Biomaterials 23, 1455–1459 (2002).

    Article  CAS  Google Scholar 

  12. Kihara, S. et al. In vivo evaluation of a MPC polymer coated continuous flow left ventricular assist system. Artif. Organs 27, 188–192 (2003).

    Article  Google Scholar 

  13. Lewis, A. L. Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids Surf. B 18, 261–275 (2000).

    Article  CAS  Google Scholar 

  14. Lewis, A. L., Tolhurst, L. A. & Stratford, P. W. Analysis of a phosphorylcholine-based polymer coating on a coronary stent pre- and post-implantation. Biomaterials 23, 1697–1706 (2002).

    Article  CAS  Google Scholar 

  15. Ishihara, K., Iwasaki, Y., Ebihara, S., Shindo, Y. & Nakabayashi, N. Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on polyethylene membrane surface for obtaining blood cell adhesion resistance. Colloids Surf. B 18, 325–335 (2000).

    Article  CAS  Google Scholar 

  16. Nakamura, T. et al. Clinical and laboratory wear studies of zirconia-on-UHMWPE combination in cementless THA. Key Eng. Mater. 240–242, 823–826 (2003).

    Article  Google Scholar 

  17. Sochart, D. H. Relationship of acetabular wear to osteolysis and loosening in total hip arthroplasty. Clin. Orthop. 363, 135–150 (1999).

    Article  Google Scholar 

  18. Williams, P. F. 3rd, Powell, G. L. & LaBerge, M. Sliding friction analysis of phosphatidylcholine as a boundary lubricant for articular cartilage. Proc. Inst. Mech. Eng. H 207, 59–66 (1993).

    Article  Google Scholar 

  19. Hills, B. A. Boundary lubrication in vivo. Proc. Inst. Mech. Eng. H 214, 83–94 (2000).

    Article  CAS  Google Scholar 

  20. Dowson, D. & Jin, Z. M. Micro-elastohydrodynamic lubrication of synovial joints. Eng. Med. 15, 63–65 (1986).

    Article  CAS  Google Scholar 

  21. Ishihara, K. et al. Why do phospholipid polymers reduce protein adsorption? J. Biomed. Mater. Res. 39, 323–330 (1998).

    Article  CAS  Google Scholar 

  22. Black, J. Metal on metal bearings. A practical alternative to metal on polyethylene total joints? Clin. Orthop. 329, S244–S255 (1996).

    Article  Google Scholar 

  23. Callaway, G. H., Flynn, W., Ranawat, C. S. & Sculco, T. P. Fracture of the femoral head after ceramic-on-polyethylene total hip arthroplasty. J. Arthroplasty 10, 855–859 (1995).

    Article  CAS  Google Scholar 

  24. Wright, T. M., Rimnac, C. M., Faris, P. M. & Bansal, M. Analysis of surface damage in retrieved carbon fiber-reinforced and plain polyethylene tibial components from posterior stabilized total knee replacements. J. Bone Joint Surg. Am. 70, 1312–1319 (1988).

    Article  CAS  Google Scholar 

  25. Livingston, B. J., Chmell, M. J., Spector, M. & Poss, R. Complications of total hip arthroplasty associated with the use of an acetabular component with a Hylamer liner. J. Bone Joint Surg. Am. 79, 1529–1538 (1997).

    Article  CAS  Google Scholar 

  26. Kurtz, S. M., Muratoglu, O. K., Evans, M. & Edidin, A. A. Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials 20, 1659–1688 (1999).

    Article  CAS  Google Scholar 

  27. McKellop, H., Shen, F. W., DiMaio, W. & Lancaster, J. G. Wear of gamma-crosslinked polyethylene acetabular cups against roughened femoral balls. Clin. Orthop. 369, 73–82 (1999).

    Article  Google Scholar 

  28. Ingram, J. H., Stone, M., Fisher, J. & Ingham, E. The influence of molecular weight, crosslinking and counterface roughness on TNF-alpha production by macrophages in response to ultra high molecular weight polyethylene particles. Biomaterials 25, 3511–3522 (2004).

    Article  CAS  Google Scholar 

  29. Konno, T., Kurita, K., Iwasaki, Y., Nakabayashi, N. & Ishihara, K. Preparation of nanoparticles composed with bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer. Biomaterials 22, 1883–1889 (2001).

    Article  CAS  Google Scholar 

  30. Boyce, B. F., Aufdemorte, T. B., Garrett, I. R., Yates, A. J. & Mundy, G. R. Effects of interleukin-1 on bone turnover in normal mice. Endocrinology 125, 1142–1150 (1989).

    Article  CAS  Google Scholar 

  31. Campbell, P. et al. Isolation of predominantly submicron-sized UHMWPE wear particles from periprosthetic tissues. J. Biomed. Mater. Res. 29, 127–131 (1995).

    Article  CAS  Google Scholar 

  32. Jono, K., Takigawa, Y., Takadama, H., Mizuno, M. & Nakamura, T. A multi-station hip joint simulator study and wear characterization of commercial hip endoprostheses. Ceram. Eng. Sci. Proc. 24, 255–260 (2003).

    Article  CAS  Google Scholar 

  33. Vermes, C. et al. The effects of particulate wear debris, cytokines, and growth factors on the functions of MG-63 osteoblasts. J. Bone Joint Surg. Am. A 83, 201–211 (2001).

    Article  Google Scholar 

  34. Yao, J., Cs-Szabo, G., Jacobs, J. J., Kuettner, K. E. & Glant, T. T. Suppression of osteoblast function by titanium particles. J. Bone Joint Surg. Am. 79, 107–112 (1997).

    Article  CAS  Google Scholar 

  35. Inagaki, K. et al. Importance of a radial head component in Sorbie unlinked total elbow arthroplasty. Clin. Orthop. 400, 123–131 (2002).

    Article  Google Scholar 

  36. Shanbhag, A. S. et al. Quantitative analysis of ultrahigh molecular weight polyethylene (UHMWPE) wear debris associated with total knee replacements. J. Biomed. Mater. Res. 53, 100–110 (2000).

    Article  CAS  Google Scholar 

  37. Paul, J. P. Forces transmitted by joints in the human body. Proc. Inst. Mech. Eng. 181, 8–15 (1967).

    Google Scholar 

  38. Zimmermann, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16, 109–110 (1983).

    Article  CAS  Google Scholar 

  39. Ogata, N. et al. Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J. Clin. Invest. 105, 935–943 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Noboru Yamawaki, Takatoshi Miyashita, Hiroaki Takadama, Kaori Jono, Reiko Yamaguchi, and Mizue Ikeuchi for their excellent technical help. This work was supported by Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology (#15390449), and Health and Welfare Research Grant for Comprehensive Research on Aging and Health from the Japanese Ministry of Health, Labour and Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kawaguchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moro, T., Takatori, Y., Ishihara, K. et al. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nature Mater 3, 829–836 (2004). https://doi.org/10.1038/nmat1233

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1233

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing