Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A structural model for metallic glasses

Abstract

Despite the intense interest in metallic glasses for a variety of engineering applications, many details of their structure remain a mystery. Here, we present the first compelling atomic structural model for metallic glasses. This structural model is based on a new sphere-packing scheme—the dense packing of atomic clusters. Random positioning of solvent atoms and medium-range atomic order of solute atoms are combined to reproduce diffraction data successfully over radial distances up to 1 nm. Although metallic glasses can have any number of chemically distinct solute species, this model shows that they contain no more than three topologically distinct solutes and that these solutes have specific and predictable sizes relative to the solvent atoms. Finally, this model includes defects that provide richness to the structural description of metallic glasses. The model accurately predicts the number of solute atoms in the first coordination shell of a typical solvent atom, and provides a remarkable ability to predict metallic-glass compositions accurately for a wide range of simple and complex alloys.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustrations of portions of a single cluster unit cell for the dense cluster packing model.
Figure 2: Comparison of relative atomic sizes and concentrations for selected metallic glasses with predictions from the dense cluster-packing model (see ref. 39 for further details of this mode of presentation).
Figure 3: Comparison of relative atomic sizes and concentrations for selected Fe-based metallic glasses with predictions from the dense cluster-packing model (see ref. 39 for further details of this mode of presentation).
Figure 4: Comparison of predicted and experimental solute–solute reduced partial radial distribution functions (Gij) for selected binary metallic glasses.

Similar content being viewed by others

References

  1. Klement, W., Willens, R.H. & Duwez, P. Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869–870 (1960).

    Article  CAS  Google Scholar 

  2. Bernal, J.D. & Mason, J. Co-ordination of randomly packed spheres. Nature 188, 910–911 (1960).

    Article  Google Scholar 

  3. Scott, G.D. Packing of spheres. Nature 188, 908–909 (1960).

    Article  Google Scholar 

  4. Finney, J.L. Random packings and the structure of simple liquids I. The geometry of random close packing. Proc. Roy. Soc. Lond. A 319, 479–493 (1970).

    Article  CAS  Google Scholar 

  5. Gaskell, P.H. A new structural model for transition metal-metalloid glasses. Nature 276, 484–485 (1978).

    Article  CAS  Google Scholar 

  6. Gaskell, P.H. A new structural model for amorphous transition metal silicides, borides, phosphides and carbides. J. Non-Cryst. Solids 32, 207 (1979).

    Article  CAS  Google Scholar 

  7. Dubois, J.M., Gaskell, P.H. & Le Caer, G. A model for the structure of metallic glasses based on chemical twinning. Proc. Roy. Soc. A 402, 323–357 (1985).

    Article  CAS  Google Scholar 

  8. Gaskell, P.H. in Materials Science and Technology (ed. Zarzycki, J.) 175–278 (VCH, Cambridge, UK, 1991).

    Google Scholar 

  9. Miracle, D.B., Sanders, W.S. & Senkov, O.N. The influence of efficient atomic packing on the constitution of metallic glasses. Phil. Mag. A 83, 2409–2428 (2003).

    Article  CAS  Google Scholar 

  10. Miracle, D.B. & Senkov, O.N. A geometric model for atomic configurations in amorphous Al alloys. J. Non-Cryst. Solids 319, 174–191 (2003).

    Article  CAS  Google Scholar 

  11. Miracle, D.B. Efficient local packing in metallic glasses. J. Non-Cryst. Solids (in the press).

  12. Mackay, A.L., Finney, J.L. & Gotoh, K. The closest packing of equal spheres on a spherical surface. Acta Crystallogr. A33, 98–100 (1977).

    Article  Google Scholar 

  13. Clare, B.W. & Kepert, D.L. The optimal packing of circles on a sphere. J. Math. Chem. 6, 325–349 (1991).

    Article  Google Scholar 

  14. Sloane, N.J.A. Kepler's conjecture confirmed. Nature 395, 435–436 (1998).

    Article  CAS  Google Scholar 

  15. Gaskell, P.H. in Glassy Metals II (eds Beck, H. & Guntherodt, H.-J.) 5–49 (Springer, Berlin, Germany, 1983).

    Book  Google Scholar 

  16. Sietsma, J. & Thijsse, B.J. An investigation of universal medium range order in metallic glasses. J. Non-Cryst. Solids 135, 146–154 (1991).

    Article  CAS  Google Scholar 

  17. Lamparter, P. & Steeb, S. in Structure of Solids (ed. Gerold, V.) 217–288 (VCH, Weinheim, Germany, 1993).

    Google Scholar 

  18. Hufnagel, T.C. & Brennan, S. Short- and medium-range order in (Zr70Cu20Ni10)90-xTaxAl10 bulk amorphous alloys. Phys. Rev. B 67, 014203 (2003).

    Article  Google Scholar 

  19. Gaskell, P.H. On the structure of simple inorganic amorphous solids. J. Phys. C Phys. 12, 4337–4368 (1979).

    Article  CAS  Google Scholar 

  20. Stephens, P.W. in Extended Icosahedral Structures (eds Jaric, M.V. & Gratias, D.) 37–104 (Academic, Boston, Massachusetts, USA, 1989).

    Book  Google Scholar 

  21. Aste, T. & Weaire, D. The Pursuit of Perfect Packing (Institute of Physics, Bristol, UK, 2000).

    Google Scholar 

  22. Ponnambalam, V. et al. Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphou steel alloys. Appl. Phys. Lett. 83, 1131–1133 (2003).

    Article  CAS  Google Scholar 

  23. Ponnambalam, V., Poon, S.J. & Shiflet, G.J. Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J. Mat. Res. 19, 1320–1323 (2004).

    Article  CAS  Google Scholar 

  24. Inoue, A., Kato, A., Zhang, T., Kim, S.G. & Masumoto, T. Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Mater. Trans. JIM 32, 609–616 (1991).

    Article  CAS  Google Scholar 

  25. Cahn, J.W. & Bendersky, L.A. in Amorphous and Nanocrystalline Metals (eds Busch, R. et al.) 139–143 (Materials Research Society, Warrendale, Pennsylvania, 2004).

    Google Scholar 

  26. Nold, E., Lamparter, P., Olbrich, H., Rainer-Harbach, G. & Steeb, S. Determination of the Partial Structure Factors on the Metallic Glass Fe80B20 . Z. Naturforsch. 36a, 1032–1044 (1981).

    CAS  Google Scholar 

  27. Lamparter, P., Sperl, W., Steeb, S. & Bletry, J. Atomic structure of amorphous metallic Ni81B19 . Z. Naturforsch. 37a, 1223–1234 (1982).

    CAS  Google Scholar 

  28. Sadoc, J.F. & Dixmier, J. Structural investigation of amorphous CoP and NiP Alloys by combined X-ray and neutron scattering. Mater. Sci. Eng. 23, 187–192 (1976).

    Article  CAS  Google Scholar 

  29. Matsubara, E., Waseda, Y., Inoue, A., Ohtera, H. & Masumoto, T. Anomalous X-ray scattering on amorphous Al87Y8Ni5 and Al90Y10 alloys. Z. Naturforsch. 44a, 814–820 (1989).

    Google Scholar 

  30. Matsubara, E. & Waseda, Y. Structural studies of new metallic amorphous alloys with wide supercooled liquid region (Overview). Mater. Trans. JIM 36, 883–889 (1995).

    Article  CAS  Google Scholar 

  31. Cowlam, N., Guoan, W., Gargner, P.P. & Davies, H.A. Ni64B36 - A transition metal-metalloid glass with first neighbor metalloid atoms. J. Non-Cryst. Solids 61-62, 337–342 (1984).

    Article  CAS  Google Scholar 

  32. Steeb, S. & Lamparter, P. Structure of binary metallic glasses. J. Non-Cryst. Solids 156–158, 24–33 (1993).

    Article  Google Scholar 

  33. Pauling, L. The Nature of the Chemical Bond (Cornell Univ. Press, Ithaca, NewYork, 1960).

    Google Scholar 

  34. Slater, J.C. Atomic radii in crystals. J. Chem. Phys. 41, 3199–3204 (1964).

    Article  CAS  Google Scholar 

  35. Egami, T. & Waseda, Y. Atomic size effect on the formability of metallic glasses. J. Non-Cryst. Solids 64, 113–134 (1984).

    Article  CAS  Google Scholar 

  36. Daams, J.L.C., Villars, P. & van Vucht, J.H.N. Atlas of Crystal Structure Types for Intermetallic Phases (ASM, International, Metals Park, Ohio, 1991).

    Google Scholar 

  37. Poon, S.J., Shiflet, G.J., Guo, F.Q. & Ponnambalam, V. Glass formability of ferrous- and aluminum-based structural metallic alloys. J. Non-Cryst. Solids 317, 1–9 (2003).

    Article  CAS  Google Scholar 

  38. Kasper, J.S. & Lonsdale, K. (eds) International Tables for X-Ray Crystallography (Kluwer Academic, Dordrecht, Holland, 1989).

    Google Scholar 

  39. Senkov, O.N. & Miracle, D.B. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater. Res. Bull. 36, 2183–2198 (2001).

    Article  CAS  Google Scholar 

  40. Lee, A., Etherington, G. & Wagner, C.N.J. Partial structure functions of amorphous Ni35Zr65 . J. Non-Cryst. Solids 61-62, 349–354 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank A. L. Greer and K.F. Kelton for critical comments on this manuscript. This research was supported under the Defense Advanced Research Projects Agency Structural Amorphous Metals Initiative (L. Christodoulou, Program Manager) and Air Force Office of Scientific Research Task 01ML05–COR (C. Hartley, Program Manager).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miracle, D. A structural model for metallic glasses. Nature Mater 3, 697–702 (2004). https://doi.org/10.1038/nmat1219

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1219

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing