Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Semi-wet peptide/protein array using supramolecular hydrogel

Abstract

The protein microarray is a crucial biomaterial for the rapid and high-throughput assay of many biological events where proteins are involved. In contrast to the DNA microarray, it has not been sufficiently established because of protein instability under the conventional dry conditions. Here we report a novel semi-wet peptide/protein microarray using a supramolecular hydrogel composed of glycosylated amino acetate. The spontaneous gel-formation and amphiphilic properties of this supramolecular hydrogel have been applied to a new type of peptide/protein gel array that is compatible with enzyme assays. Aqueous cavities created in the gel matrix are a suitable semi-wet reaction medium for enzymes, whereas the hydrophobic domains of the fibre are useful as a unique site for monitoring the reaction. This array system overcomes several drawbacks of conventional protein chips, and thus can have potential applications in pharmaceutical research and diagnosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural and physicochemical analyses of the supramolecular hydrogel.
Figure 2: Infrared spectral shift of the amide carbonyl region of 1 depending on its aggregation state.
Figure 3: Crystal structure analysis of the molecular packing of 1 prepared from a hydrogel.
Figure 4
Figure 5: Fluorometric activity assay of an enzyme entrapped in a supramolecular hydrogel.
Figure 6: Semi-wet peptide/protein chip using the supramolecular hydrogel.

Similar content being viewed by others

References

  1. Shena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  Google Scholar 

  2. Winzeler, E.A. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  Google Scholar 

  3. The chipping forecast. Nature Genet. 21 (suppl.), 1–60 (1999).

  4. Macbeath, G. & Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

    CAS  Google Scholar 

  5. Zhu, H. et al. Analysis of yeast protein kinases using protein chips. Nature Genet. 26, 283–289 (2000).

    Article  CAS  Google Scholar 

  6. Zhu, H. et al. Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001).

    Article  CAS  Google Scholar 

  7. Arenkov, P. et al. Protein microchips: use for immunoassay and enzymatic reactions. Anal. Biochem. 278, 123–131 (2000).

    Article  CAS  Google Scholar 

  8. Schild, H.G. Poly (N-isopropylacrylamide): experiment, theory and application. Prog. Polym. Sci. 17, 163–249 (1992).

    Article  CAS  Google Scholar 

  9. Pelton, R. Temperature-sensitive aqueous microgels. Adv. Colloid Interface Sci. 85, 1–33 (2000).

    Article  CAS  Google Scholar 

  10. Lee, K.Y. & Mooney, D.J. Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1879 (2001).

    Article  CAS  Google Scholar 

  11. Lendlein, A. & Kelch, S. Shape-memory polymers. Angew. Chem. Int. Edn 41, 2034–2057 (2002).

    Article  CAS  Google Scholar 

  12. Terech, P. & Weiss, R.G. Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97, 3133–3159 (1997).

    Article  CAS  Google Scholar 

  13. Hanabusa, K., Yamada, M., Kimura, M. & Shirai, H. Prominent gelation and chiral aggregation of alkylamides derived from trans-1,2-diaminocyclohexane. Angew. Chem. Int. Edn Engl. 35, 1949–1951 (1996).

    Article  CAS  Google Scholar 

  14. Murata, K. et al. Thermal and light control of the sol-gel phase transition in cholesterol-based organic gels. Novel helical aggregation modes as detected by circular dichroism and electron microscopic observation. J. Am. Chem. Soc. 116, 6665–6676 (1994).

    Google Scholar 

  15. Hamachi, I., Kiyonaka, S. & Shinkai, S. Solid-phase lipid synthesis (SPLS)-2: incidental discovery of organogelators based on artificial glycolipids. Tetrahedron Lett. 42, 6141–6145 (2001).

    Article  CAS  Google Scholar 

  16. Kobayashi, H. et al. Molecular design of super hydrogelators: understanding the gelation process of azobenzene-based sugar derivatives in water. Org. Lett. 4, 1423–1427 (2002).

    Article  CAS  Google Scholar 

  17. Jung, J.-H. et al. Self-assembly of a sugar-based gelator in water: its remarkable diversity in gelation ability and aggregate structure. Langmuir 17, 7229–7234 (2001).

    Article  CAS  Google Scholar 

  18. Menger, F.M. & Caran, K.L. Anatomy of a gel: amino acid derivatives that rigidify water at submilimolar concentrations. J. Am. Chem. Soc. 122, 11679–11690 (2000).

    Article  CAS  Google Scholar 

  19. Maitra, U., Mukhopadhyay, S., Sarkar, A., Rao, P. & Indi, S.S. Hydrophobic pockets in a nonpolymeric aqueous gel: observation of such a gelation process by color change. Angew. Chem. Int. Edn 40, 2281–2283 (2001).

    Article  CAS  Google Scholar 

  20. Estroff, L.A. & Hamilton, A.D. Effective gelation of water using a series of bis-urea dicarboxylic acids. Angew. Chem. Int. Edn 39, 3447–3449 (2000).

    Article  CAS  Google Scholar 

  21. Bhattacharya, S. & Acharya, S.N.G. Pronounced hydrogel formation by the self-assembled aggregates of N-alkyl dissacharide amphiphiles. Chem. Mater. 11, 3504–3511 (1999).

    Article  CAS  Google Scholar 

  22. Oda, R., Huc, I. & Candau, S.J. Gemini surfactant as new, low molecular weight gelators of organic solvents and water. Angew. Chem. Int. Edn 37, 2689–2691 (1998).

    Article  CAS  Google Scholar 

  23. Makarevic, J. et al. Bis(amino acid) oxalyl amides as ambidextrous gelators of water and organic solvents: supramolecular gels with temperature dependent assembly/dissolution equilibrium. Chem. Eur. J. 7, 3328–3341 (2001).

    Article  CAS  Google Scholar 

  24. Kiyonaka, S., Sugiyasu, K., Shinkai, S. & Hamachi, I. First thermally responsive supramolecular polymer based on glycosylated amino acid. J. Am. Chem. Soc. 124, 10954–10955 (2002).

    Article  CAS  Google Scholar 

  25. Kiyonaka, S., Shinkai, S. & Hamachi, I. Combinatorial library of low molecular-weight organo- and hydrogelators based on glycosylated amino acid derivatives by solid-phase synthesis. Chem. Eur. J. 9, 976–984 (2003).

    Article  CAS  Google Scholar 

  26. Kiyonaka, S., Zhou, S.-L. & Hamachi, I. pH-responsive phase transition of supramolecular hydrogel consisting of glycosylated amino acetate and carboxylic acid derivative. Supramol. Chem. 15, 521–528 (2003).

    Article  CAS  Google Scholar 

  27. Hamachi, I., Kiyonaka, S. & Shinkai, S. Solid-phase lipid synthesis (SPLS) for construction of an artificial glycolipid library. Chem. Commun. 1281–1282 (2000).

  28. Kunitake, T. Synthetic bilayer membranes: molecular design, self-organization, and application. Angew. Chem. Int. Edn Engl. 31, 709–726 (1992).

    Article  Google Scholar 

  29. Stryer, L. The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of nonpolar binding sites. J. Mol. Biol. 13, 482–495 (1965).

    Article  CAS  Google Scholar 

  30. Surewicz, W.K., Mantsch, H.H. & Chapman, D. Determination of protein secondary structure by fourier transform infrared spectroscopy: a critical assessment. Biochemistry 32, 389–394 (1993).

    Article  CAS  Google Scholar 

  31. Masaki, T., Tanabe, M., Nakamura, K. & Soejima, M. Studies on a new proteilytic-enzyme from achromobactor-lyticus M497-1. 1. purification and some enzymatic-properties. Biochim. Biophys. Acta 660, 44–50 (1981).

    Article  CAS  Google Scholar 

  32. Masaki, T., Fujihashi, T., Nakamura, K. & Soejima, M. Studies on a new proteilytic-enzyme from achromobactor-lyticus M497-1. 2. specificity and inhibitionstudies of achromobactor protein-1. Biochim. Biophys. Acta 660, 51–55 (1981).

    Article  CAS  Google Scholar 

  33. Drapeau, G.R., Houmard, J. & Boily, Y. Purification and properties of an extracellular protease of staphylococcus aureus. J. Biol. Chem. 247, 6720–6726 (1972).

    CAS  Google Scholar 

  34. Lottenberg, R., Christensen, U., Jackson, C.M. & Coleman, P.L. Assay of coagulation proteases using peptide chromogenic and fluorogenic substrates. Meth. Enzymol. 80, 341–361 (1981).

    Article  CAS  Google Scholar 

  35. Matayoshi, E.D., Wang, G.T., Krafft, G.A. & Erickson, J. Novel fluorogenic substrates for assaying retroviral proteases by resonance energy-transfer. Science 247, 954–958 (1990).

    Article  CAS  Google Scholar 

  36. Collier, C.P. et al. [2]catenane-based solid state electronically reconfigurable switch. Science 289, 1172–1175 (2000).

    Article  CAS  Google Scholar 

  37. Aggeli, A. et al. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes. Nature 386, 259–262 (1997).

    Article  CAS  Google Scholar 

  38. Holmes, T.C. et al. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc. Natl Acad. Sci. USA 97, 6728–6733 (2000).

    Article  CAS  Google Scholar 

  39. Collier, J.H. et al. Thermally and photochemically triggered self-assembly of peptide hydrogels. J. Am. Chem. Soc. 123, 9463–9464 (2001).

    Article  CAS  Google Scholar 

  40. Schneider, J.P. et al. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc. 124, 15030–15037 (2002).

    Article  CAS  Google Scholar 

  41. Kisiday, J. et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair. Proc. Natl Acad. Sci. USA 99, 9996–10001 (2002).

    Article  CAS  Google Scholar 

  42. Petka, W.A., Harden, J.L., McGrath, K.P., Wirtz, D. & Tirrell, D.A. Reversible hydrogels from self-assembling artificial proteins. Science 281, 389–392 (1998).

    Article  CAS  Google Scholar 

  43. Welsh, E.R. & Tirrell, D.A. Engineering the extracellular matrix: A novel approach to polymeric biomaterials. I. Control of the physical properties of artificial protein matrices designed to support adhesion of vascular endothelial cells. Biomacromolecules 1, 23–30 (2000).

    Article  CAS  Google Scholar 

  44. Nowak, A.P. et al. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417, 424–428 (2002).

    Article  CAS  Google Scholar 

  45. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. Completion and refinement of crystal structures with SIR92. J. Appl. Cryst. 26, 343–350 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

This research is partially supported by JST (PRESTO, Synthesis and Control) and a Grant-in-Aid for the 21st COE Research Project on “Functional Innovation of Molecular Informatics” from the Ministry of Education, Science, Sports and Culture of Japan, and Tokuyama Science Foundation and Kurata Science Foundation. S.K. is a postdoctoral fellow of the Japan Society for the Promotion of Science (JSPS). We are grateful to H. Ueyama (Kyushu university) for valuable comments on construction of the supramolecular gel microarray.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itaru Hamachi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Information, Fig. S2 (PDF 205 kb)

Supplementary Information, Fig. S3

Supplementary Information, Table S1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiyonaka, S., Sada, K., Yoshimura, I. et al. Semi-wet peptide/protein array using supramolecular hydrogel. Nature Mater 3, 58–64 (2004). https://doi.org/10.1038/nmat1034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1034

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing