Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A detergent-insoluble membrance compartment contains Aβ in vivo

Abstract

Ordered assembly of the amyloid-β protein (Aβ) into amyloid fibrils is a critical step in Alzheimer's disease (AD). To release the amyloidogenic peptide Aβ from the Alzheimer amyloid precursor protein (APP), two secretases act sequentially: first, β-secretase cleaves close to the membrane within the ectodomain and then γ-secretase cuts within the transmembrane domain1. The sites of γ-secretase cleavage are after residues 40 or 42 of Aβ. Except in those rare cases of AD caused by a mutation, levels of secreted Aβ are not elevated; thus, the secretory pathway may be unaffected, and factors other than the extracellular concentration of Aβ may contribute to the aggregation properties of the peptide. Aβ is also present in intracellular compartments2–5. The two γ-secretase cleavage products, Aβ42 and Aβ40, were found in different compartments: Aβ42 in the endoplasmic reticulum (ER)/intermediate compartment3–5, and Aβ40 in the trans-Colgi network2,4 (TCN). The cellular compartments that harbor Aβ are target sites for therapeutic intervention. Here we report that in the brain, the principal compartment in which Aβ resides is a detergent-insoluble glycolipid-enriched membrane domain (DIG). Also present in the DIG fractions are the endo-proteolytic fragments of presenilin-1 (PS1) and APP. The presence of these proteins, which all contribute to the generation of Aβ, indicates that the DIG fraction is probably where the intra-membranous cleavage of APP occurs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Selkoe, D.J. Alzheimer's disease: genotypes, phenotypes and treatments. Science 275, 630–631 (1997).

    Article  CAS  Google Scholar 

  2. Xu, H. et al. Generation of Alzheimer β-amyloid protein in the trans-Golgi network in the apparent absence of vesicle formation. Proc. Natl. Acad. Sci. USA 94, 3748–3752 (1997).

    Article  CAS  Google Scholar 

  3. Wild-Bode, C. et al. Intracellular generation and accumulation of amyloid β-peptide terminating at amino acid 42. J. Biol. Chem. 272, 16085–16088 (1997).

    Article  CAS  Google Scholar 

  4. Hartmann, T. et al. Distinct sites of intracellular production of Alzheimer's disease A beta 40/42 amyloid peptides. Nature Med. 3, 1016–1018 (1997).

    Article  CAS  Google Scholar 

  5. Cook, D.G. et al. Alzheimer's A beta (1–42) is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells. Nature Med. 3, 1021–1023 (1997).

    Article  CAS  Google Scholar 

  6. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    Article  CAS  Google Scholar 

  7. Parton, R.G. Caveolae and caveolins. Curr. Opin. Cell Biol 8, 542–548 (1996).

    Article  CAS  Google Scholar 

  8. Lisanti, M. et al. Characterization of caveolin-rich membrane domains isolated from an endothelial-rich sourcer: implication for human disease. J. Cell Biol. 126, 111–126 (1994).

    Article  CAS  Google Scholar 

  9. Tienari, P.J. et al. Intracellular and secreted Alzheimer β-amyloid species are generated by distinct mechanisms in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA 94, 4125–4130 (1997).

    Article  CAS  Google Scholar 

  10. Wu, C., Butz, S., Ying, Y.-s. & Anderson, G.W. Tyrosine kinase receptors concentrated in caveolae-like domains from neuronal plasma membranes. J. Biol. Chem. 272, 3554–3559 (1997).

    Article  CAS  Google Scholar 

  11. Bickel, P. et al. Flotillin and epidermal surface antigen define a new family of caveolae-assofiated integral membrane proteins. J. Biol. Chem. 272, 13793–13802 (1997).

    Article  CAS  Google Scholar 

  12. Olive, S., Dubois, C., Schachner, M. & Rougon, G. The F3 neuronal glycosylphosphatidylinositol-linked molecule is localized ot glycolipid-enriched membrane sub-domains and interacts with L1 and Fyn kinase in cerebellum. J. Neurochem. 65, 2307–2317 (1995).

    Article  CAS  Google Scholar 

  13. Bouillot, C., Prochiantz, A., Rougon, G. & Allinquant, B. Axonal amyloid precursor protein expressed by neurons in vitro is present in a membrane fraction with caveolae-like properties. J. Biol. Chem. 271, 7640–7644 (1996).

    Article  CAS  Google Scholar 

  14. Schnitzer, J.E., McIntosh, D.P., Dvorak, A.M., Liu, J. & Oh, P. Separation of caveolae from associated microdomains of CPI-anchored proteins. Science 269, 1435–1439 (1995).

    Article  CAS  Google Scholar 

  15. Hope, H.R. & Pike, L.J. Phosphoinositides and phosphoinositide-utilizing enzymes in detergent-insoluble lipid domains. Mol. Biol. Cell 7, 843–851 (1996).

    Article  CAS  Google Scholar 

  16. DeStrooper, B. et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387–390 (1998).

    Article  CAS  Google Scholar 

  17. Kim, T.-W., Pettingell, W.H., Jung, Y.-K., Kovacs, D.M. & Tanzi, R.E. Alternative cleavage of Alzheimer's associated presenilins during apoptosis by a caspase-3 family protease. Science 277, 373–376 (1997).

    Article  CAS  Google Scholar 

  18. Thinakaran, G. et al. Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17, 181–190 (1996).

    Article  CAS  Google Scholar 

  19. Seeger, M. et al. Evidence for phosphorylation and oligomeric assembly of presenilin 1. Proc. Natl. Acad. Sci. USA 94, 5090–5094 (1997).

    Article  CAS  Google Scholar 

  20. Zhang, W. et al. Characterization of beta-amyloid peptide precursor processing by the yeast YAP3 and MKC7 proteases. Biochim. Biophys. Acta 1359, 110–122 (1997).

    Article  CAS  Google Scholar 

  21. Tettamanti, G. & Riboni, L. Gangliosides and modulation of the function of neural cells. Adv. Lipid Res. 25, 235–267 (1982).

    Google Scholar 

  22. Brown, D.A. & London, E. Structure of detergent-resistenat membrane domains: Does phase separation occur in biological membrane? Biochem. Biophys. Res. Commun. 240, 1–7 (1997).

    Article  CAS  Google Scholar 

  23. Mason, R.P., Shoemaker, W.J., Shajenko, L., Chambers, T.C. & Herbette, L.G. Evidence for changes in the Alzheimer's disease brain cortical membrane structure mediated by cholesterol. Neurobiol. Aging 13, 413–419 (1992).

    Article  CAS  Google Scholar 

  24. Nitsch, R.M. et al. Evidence for a membrane defect in Alzheimer disease brain. Proc. Natl. Acad. Sci. USA 89, 1671–1675 (1992).

    Article  CAS  Google Scholar 

  25. Weisgraber, K.H. & Mahley, R.W. Human apolipoprotein E: the Alzheimer's disease connection. FASEB J. 10, 1485–1494 (1996).

    Article  CAS  Google Scholar 

  26. Avdulov, N.A. et al. Lipid binding to amyloid β-peptide aggregates: preferential binding of cholesterol as compared with phosphatidylcholine and fatty acids. J. Neurochem. 69, 1746–1752 (1997).

    Article  CAS  Google Scholar 

  27. Choo-Smith, L.-P., Garzon-Rodriguez, W., Glabe, C.G. & Surewicz, W.K. Acceleration of amyloid fibril formation by specific binding of Abeta-(1–40) peptide to ganglioside-containing membrane vesicles. J. Biol. Chem. 272, 22987–22990 (1997).

    Article  CAS  Google Scholar 

  28. Jones, D.H., Rigby, A.C., Barber, K.R. & Grant, C.W. Oligomerizatoin of the EGF receptor transmembrane domain: a 2H NMR study in lipid bilayers. Biochem. 36, 12616–12624 (1997).

    Article  CAS  Google Scholar 

  29. Choo-Smith, L.i. & Surewicz, W.K. The interaction between Alzheimer amyloid β(1-40) peptide and ganglioside GM1-containing membranes. FEBS Lett. 402, 95–98 (1997).

    Article  CAS  Google Scholar 

  30. Yanagisawa, K., Odaka, A., Suzuki, N. & Ihara, Y. GM1 ganglioside-bound amyloid β-protein (Aβ): a possible form of preamyloid in Alzheimer disease. Nature Med. 1, 998–999 (1995).

    Article  Google Scholar 

  31. Koo, E.H. & Squazzo, S. Evidence that production and release of amyloid β-protein involves the endocytic pathway. J. Biol. Chem. 269, 17386–17389 (1994).

    CAS  PubMed  Google Scholar 

  32. Zhou, J., et al. Presenilin 1 interacts in brain with a novel member of the armadillo family. Neurorep. 8, 1489–1494 (1997).

    Article  CAS  Google Scholar 

  33. Johnson-Wood, K. et al. Amyloid precursor protein processing and Aβ42 deposition in a transgenic mouse model of Alzheimer disease. Proc. Natl. Acad. Sci. USA 94, 1550–1555 (1997).

    Article  CAS  Google Scholar 

  34. Slusarewicz, P., Hui, N. & Warren, G. in Cell Biology: A Laboratory Handbook. Vol. (ed. Celis, J.E.) 509–516 (Academeic Press, 1994).

    Google Scholar 

  35. Xu, Y.H. & Slater, H.S. Immunocytochemical localization of endogenous antithrombin III in the vasculature of rat tissues reveals locations of anticoagulantly active heparan sulfate proteoglycans. J. Histochem. Cytochem. 42, 1365–1376 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SJ., Liyanage, U., Bickel, P. et al. A detergent-insoluble membrance compartment contains Aβ in vivo. Nat Med 4, 730–734 (1998). https://doi.org/10.1038/nm0698-730

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0698-730

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing