Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer dormancy: Opportunities for new therapeutic approaches

Abstract

Tumor dormancy is a more common feature of cancer than previously appreciated. Growth of a population of fully malignant cells can be controlled by a variety of host mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Woodruff, M. Interaction of cancer and host [The Walter Hubert Lecture, 1982]. Br. J. Cancer 46, 313–322 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Callaway, M.P. & Briggs, J.C. The incidence of later recurrence (greater than 10 years): An analysis of 536 consecutive cases of cutaneous melanoma. Br. J. Plast. Surg. 42, 46–49 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Henderson, J.C., Harris, J.R., Kinne, D.W. & Hellman, S. Cancer of the breast. in Cancer: Principles and Practice of Oncology, 3rd edn. (eds. DeVita, V.J., Jr., Hellman, S. & Rosenberg, S.A.) 1197–1268 (Lippincott, Philadelphia, 1989).

    Google Scholar 

  4. Meeker, T. et al. Emergence of idiotype variants during treatment of B-Cell lymphoma with anti-idiotype antibodies. N. Engl. J. Med. 312, 1658–1665 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Ito, Y. & Miyamura, K. Clinical significance of minimal residual disease in leukemia detected by polymerase chain reaction: Is molecular remission a milestone for achieving a cure? Leuk. Lymphoma 16, 57–64 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Israeli, R.S. et al. Sensitive detection of prostatic hematogenous tumor Cell dissemination using prostate specific antigen and prostate specific membrane-derived primers in the polymerase chain reaction. J. Urol. 153, 573–577 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Loric, S. et al. Enhanced detection of hematogenous circulating prostatic Cells in patients with prostate adenocarcinoma by using nested reverse transcription polymerase chain reaction assay based on prostate-specific membrane antigen. Clin. Chem. 41, 1698–1704 (1995).

    CAS  PubMed  Google Scholar 

  8. Folkman, J. Tumor angiogenesis. in The Molecular Basis of Cancer (eds. Mendelsohn, J., Howley, P.M., Israel, M.A. & Liotta, L.A.) 206–232 (Saunders, Philadelphia, 1995).

    Google Scholar 

  9. Bouck, N., Stellmach, V. & Hsu, S.C. How tumors become angiogenic. Adv. Cancer Res. 69, 135–174 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Vaage, J. & Harlos, J.P. Collagen production by macrophages in tumor encapsulation and dormancy. Br. J. Cancer 63, 758–762 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Penn, I. The effect of immunosuppression on pre-existing cancers. Transplantation 55, 742–747 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Greenberg, P.D. Adoptive T Cell therapy of tumors: Mechanisms operative in the recognition and elimination of tumor Cells. Adv. Immunol. 49, 281–355 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Boon, T., Cerottini, J.C. Van den Eynde, B., van der Bruggen, P., & Van Pel, A., Tumor antigens recognized by T lymphocytes. Annu. Rev. Immunol. 12, 337–365 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Kawakami, Y. et al. T-Cell recognition of human melanoma antigens. J. Immunother. 14, 88–93 (1993).

    Article  CAS  Google Scholar 

  15. Eccles, S.A. & Alexander, P. Immunologically-mediated restraint of latent tumour metastases. Nature 257, 52–53 (1975).

    Article  CAS  PubMed  Google Scholar 

  16. Wheelock, E.F., Weinhold, K.J. & Levich, J. The tumor dormant state. Adv. Cancer Res. 34, 107–140 (1981).

    Article  CAS  PubMed  Google Scholar 

  17. Siu, H., Vitetta, E.S., May, R.D. & Uhr, J.W. Tumor dormancy. I. Regression of BCL, tumor and induction of a dormant tumor state in mice chimeric at the major histocompatibility complex. J. Immunol. 137, 1376–1382 (1986).

    CAS  PubMed  Google Scholar 

  18. Weiss, L., Morecki, S., Vitetta, E.S., & Slavin, S., Suppression and elimination of BCL, leukemia by allogeneic bone marrow transplantation. J. Immunol. 130, 2452–2455 (1983).

    CAS  PubMed  Google Scholar 

  19. Uhr, J.W., Tucker, T., May, R.D., Siu, H. & Vitetta, E.S. Cancer dormancy: Studies of the murine BCL, lymphoma. Cancer Res. 51, 5045S–5053S (1991).

    CAS  PubMed  Google Scholar 

  20. Khazaie, K. et al. Persistence of dormant tumor Cells in the bone marrow of tumor Cell-vaccinated mice correlates with long-term immunological protection. Proc. Natl. Acad. Sci. USA 91, 7430–7434 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matsuzawa, A. & Takeda, Y. The establishment of a tumor dormant state following a clinically complete cure of disseminated leukemia by chemotherapy in mice. in Premalignancy and Tumor Dormancy (eds. Yefenof, E. & Scheuermann, R.H.), Ch. 6, 89–103 (R.G. Landes Co., Austin, TX, 1996).

    Google Scholar 

  22. Stevenson, F.K., George, A.J.T. & Glennie, M.J. Anti-idiotypic therapy of leukemias and lymphomas. Chem. Immunol. 48, 126–166 (1990).

    CAS  PubMed  Google Scholar 

  23. Racila, E. et al. Tumor dormancy and Cell signaling>. II. Antibody as an agonist in inducing dormancy of a B Cell lymphoma in SCID mice J. Exp. Med. 181, 1539–1550 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Levy, R. & Miller, R.A. Therapy of lymphoma directed at idiotypes. J. Natl. Cancer Inst. Monogr. 10, 61–68 (1990).

    Google Scholar 

  25. Yefenof, E. et al. Cancer dormancy: Isolation and characterization of dormant lymphoma Cells. Proc. Natl. Acad. Sci. USA 90, 1829–1833 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vuist, W.M.J., Levy, R. & Maloney, D.G. Lymphoma regression induced by monoclonal anti-idiotypic antibodies correlates with their ability to induce Ig signal transduction and is not prevented by tumor expression of high levels of bcl-2 protein. Blood 83, 899–906 (1994).

    CAS  PubMed  Google Scholar 

  27. Scott, D.W. et al. Lymphoma models for B-Cell activation and tolerance. II. Growth inhibition by anti-μ of WEHI-231 and selection and properties of resistant mutants. Cell. Immunol. 93, 124–131 (1985).

    Article  CAS  PubMed  Google Scholar 

  28. Vitetta, E.S. & Uhr, J.W. Monoclonal antibodies as agonists: An expanded role for their use in cancer therapy. Cancer Res. 54, 5301–5309 (1994).

    CAS  PubMed  Google Scholar 

  29. Herlyn, D. & Koprowski, H. IgG2a monoclonal antibodies inhibit human tumor growth through interaction with effector Cells. Proc. Natl. Acad. Sci. USA 79, 4761–4765 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Steplewski, Z. et al. Isolation and characterization of anti-monosialoganglioside monoclonal antibody 19-9 class-switch variants. Proc. Natl. Acad. Sci. USA 82, 8653–8657 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kaminski, M.S., Kitamura, K., Maloney, D.G., Campbell, M.J. & Levy, R. Importance of antibody isotype in monoclonal anti-idiotype therapy of a murine B Cell lymphoma: A study of hybridoma class switch variants. J. Immunol. 136, 1123–1130 (1986).

    CAS  PubMed  Google Scholar 

  32. Denkers, E.Y., Badger, C.C., Ledbetter, J.A. & Bernstein, I.D. Influence of antibody isotype of passive serotherapy of lymphoma. J. Immunol. 135, 2183–2186 (1995).

    Google Scholar 

  33. Metzger, H. Transmembrane signaling: The joy of aggregation. J. Immunol. 149, 1477–1487 (1992).

    CAS  PubMed  Google Scholar 

  34. Marches, R. et al. Tumour dormancy and Cell signaling-III: Role of hypercrosslinking of IgM and CD40 on the induction of Cell cycle arrest and apoptosis in B lymphoma Cells. Ther. Immunol. 2, 125–136 (1996).

    Google Scholar 

  35. Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 1, 571–573 (1889).

    Article  Google Scholar 

  36. Mintz, B. & Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma Cells. Proc. Natl. Acad. Sci. USA 72, 3585–3589 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Albelda, S.M. Role of integrins and other Cell adhesion molecules in tumor progression and metastasis. Lab. Invest. 68, 4–17 (1993).

    CAS  PubMed  Google Scholar 

  38. Jothy, S., Munro, S.B., LeDuy, L., McClure, D. & Blaschuk, O.W. Adhesion or anti-adhesion in cancer: What matters more? Cancer Metastasis Rev. 14, 363–376 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Liotta, L.A. & Stetler-Stevenson, W.G. Principles of molecular Cell biology of cancer: Cancer metastasis. in Cancer: Principles and Practice of Oncology, 4th edn. (eds. DeVita, V.T., Jr., Hellman, S. & Rosenberg, S.A.) 134–149 (Lippincott, Philadelphia, 1993).

    Google Scholar 

  40. Ronnov-lessen, L., Petersen, O.W. & Bissell, M.J. Cellular changes involved in conversion of normal to malignant breast: Importance of the stromal reaction. Physiol. Rev. 76, 69–125 (1996).

    Article  Google Scholar 

  41. Vitetta, E.S., et al. Tumor dormancy and Cell signaling. V. Regrowth of the BCL, tumor after dormancy is established. Blood (in the press).

  42. Butcher, E.C. & Picker, L.J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Cyster, J.G., Hartley, S.B. & Goodnow, C.C. Competition for follicular niches excludes self-reactive Cells from the recirculating B-Cell repertoire. Nature 371, 389–395 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Nicolson, G.L. Cancer progression and growth: Relationship of paracrine and autocrine growth mechanisms to organ preference of metastasis. Exp. Cell Res. 204, 171–180 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Theodorescu, D., Cornil, I., Sheehan C., Man, M.S., & Kerbel, R.S., Ha-ras induction of the invasive phenotype results in up-regulation of epidermal growth factor receptors and altered responsiveness to epidermal growth factor in human papillary transitional Cell carcinoma Cells. Cancer Res. 51, 4486–4491 (1991).

    CAS  PubMed  Google Scholar 

  46. Croxtall, J.D., Jamil, A., Ayub, M., Colletta, A.A. & White, J.O. TGF-β stimulation of endometrial and breast-cancer Cell growth. Int. J. Cancer 50, 822–827 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Plaisance, S. et al. Human melanoma Cells express a functional interleukin-2 receptor. Int. J. Cancer 55, 164–170 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Ramani, P. & Balkwill, F.R. Enhanced metastases of a mouse carcinoma after in vitro treatment with murine interferon gamma. Int. J. Cancer 40, 830–834 (1987).

    Article  CAS  PubMed  Google Scholar 

  49. Friedberg, E.C., Walker, G. & Siede, W. SOS responses and DNA damage tolerance in prokaryotes. in DNA Repair and Mutagenesis 407–464 (Am. Soc. for Microbiology Press, Washington, DC, 1995).

    Google Scholar 

  50. Israel, L. Tumor progression: Random mutations or an integrated survival response to Cellular stress conserved from uniCellular organisms? J. Theor. Biol. 178, 375–380 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Lundy Lovett, E.J., Lipow, D. & Whitte, C., Aneshesia, surgery, immuno suppression, and tumor growth. in Cellular Immune Mechanisms and Tumor Dormancy, (eds. Stewart, T.H.M. & Wheelock, E.F.) 155–167 (CRC Press, Boca Raton, FL, 1992).

    Google Scholar 

  52. Eccles, S.A. Dormancy in experimental solid tumour systems. in Cellular Immune Mechanisms and Tumor Dormancy, (eds. Stewart, T.H.M. & Wheelock, E.F.) 27–51 (CRC Press, Boca Raton, FL, 1992).

    Google Scholar 

  53. Noble, R.L. & Hoover, L. A classification of transplantable tumors in the Nb rats controlled by estrogen from dormancy to autonomy. Cancer Res. 35, 2935–2941 (1975).

    CAS  PubMed  Google Scholar 

  54. Kluin, P.M. & Schuuring, E. Chromosomal translocations in B Cells of normal individuals: Preneoplasia or dormancy? in Premalignancy and Tumor Dormancy (eds. Yefenof, E. & Scheuermann, R.H.) Ch. 1, 1–15 (R.G. Landes Co., Austin, TX, 1996).

    Google Scholar 

  55. Fendly, B.M. et al. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res. 50, 1550–1558 (1990).

    CAS  PubMed  Google Scholar 

  56. Drebin, J.A., Link, V.C. & Greene, M.I. Monoclonal antibodies specific for the neu oncogene product directly mediate anti-tumor effects in vivo. Oncogene 2, 387–394 (1988).

    CAS  PubMed  Google Scholar 

  57. Riethmiiller, G. et al. Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes' C colorectal carcinoma. Lancet 343, 1172–1174 (1994).

    Google Scholar 

  58. Stingl, G. & Bergstresser, P.R., Dendritic Cells: A major story unfolds. Immunol. Today 16, 330–333 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Pardoll, D.M. & Beckerleg, A.M. Exposing the immunology of naked DNA vaccines. Immunity 3, 165–169 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Hsu, F.J. et al. Vaccination of patients with B-Cell lymphoma using autologous antigen-pulsed dendritic Cells. Nature Med. 2, 52–58 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhr, J., Scheuermann, R., Street, N. et al. Cancer dormancy: Opportunities for new therapeutic approaches. Nat Med 3, 505–509 (1997). https://doi.org/10.1038/nm0597-505

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0597-505

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing