Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A lipoprotein lipase mutation (Asn291Ser) is associated with reduced HDL cholesterol levels in premature atherosclerosis

Abstract

A reduction of high density lipoprotein cholesterol (HOC) is recognized as an important risk factor for coronary artery disease (CAD). We now show in approximately 1 in 20 males with proven atherosclerosis that an Asn291Ser mutation in the human lipoprotein lipase (LPL) gene is associated with significantly reduced HDL levels (P=0.001) and results in a significant decrease in LPL catalytic activity (P<0.0009). The relative frequency of this mutation increases in those patients with lower HDL cholesterol levels. In vitro mutagenesis and expression studies confirm that this change is associated with a significant reduction in LPL activity. Our data support the relationship between LPL activity and HDL–C levels, and suggest that a specific LPL mutation may be a factor in the development of atherosclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hobbs, H.H., Brown, M.S. & Goldstein, J.L. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum. Mut. 1, 445–466 (1992).

    Article  CAS  Google Scholar 

  2. Soria, L.F., Ludwig, E.H., Clarke, H.R.G., Vega, G.L., Grundy, S.M. & McCarthy, B.J. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc. natn Acad. Sci. U.S.A. 86, 587–591 (1989).

    Article  CAS  Google Scholar 

  3. Brown, M.L. et al. Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature 342, 448–451 (1989).

    Article  CAS  Google Scholar 

  4. Rubin, E.M., Krauss, P.M., Spangler, E.A., Verstuft, G. & Clift, S.M. Inhibition of early atherogenesis in transgenic mice by human apolipoprotein A1. Nature 353, 265–266 (1991).

    Article  CAS  Google Scholar 

  5. Gordon, T., Caselli, W.P., Hjortland, M.C., Kannel, W.B. & Dawber, T.R. High density lipoprotein as a protective factor agains coronary heart disease: the Framingham Study. Am. J. Med. 62, 707–714 (1977).

    Article  CAS  Google Scholar 

  6. Tikkanen, M.J. & Nikkila, E.A. Post-heparin plasma lipoprotein and hepatic lipase are determinants of hypo and hyper-alphalipoproteinemia. J. Lipid Res. 30, 1117–1126 (1989).

    Google Scholar 

  7. Taskinen, M.R. & Nikkila, E.A. High density lipoprotein subfractions in relation to lipoprotein lipase activity of tissues in man — evidence for reciprocal regulation of HDL2 and HDL3 levels by lipoprotein lipase. Clin. Chim. Acta. 115, 63–71 (1981).

    Article  Google Scholar 

  8. Brunzell, J.D. Familial lipoprotein lipase deficiency and other causes of the chylomicronemia syndrome. in The Metabolic Basis of Inherited Disease 6th edn (eds Scriver, C. R. & Sly, W.S.) 1168–1180 (McGraw-Hill, New York, 1989).

    Google Scholar 

  9. Ma, Y. et al. Increased frequency of an Asn291 Ser mutation in the human LPL gene in patients with Apo E2 deficiency (E2/2, E3/2 and E4/2) and hyperlipidemia including type III hyperlipoproteinemia. Circulation 88, 1–179 (1993).

    Article  Google Scholar 

  10. Wion, K.L., Kirchgessner, T.G., Lusis, J., Schotz, M.C. & Lawn, R.M. Human lipoprotein lipase complementary DNA sequence. Science 235, 1638–1641 .(1987).

    Article  CAS  Google Scholar 

  11. Roncaglioni, M.C. et al. Role of family history in patients with myocardial infarction. Circulation 85, 2065–2072 (1992).

    Article  CAS  Google Scholar 

  12. Genest, J.J. Jr., et al. Familial lipoprotein disorders in patients with premature coronary artery disease. Circulation 85, 2025–2033 (1992).

    Article  Google Scholar 

  13. Blades, B., Vega, G.L. & Grundy, S.M. Activities of lipoprotein lipase and hepatic triglyceride lipase in postheparin plasma of patients with low concentrations of HDL cholesterol. Art. Thromb. 138, 1227–1235 (1993).

    Article  Google Scholar 

  14. Miller, N.E., Thelle, D.S., Forde, O.H. & Mops, O.D., Study: high-density lipoprotein and coronary heart disease: a prospective case-control study. Lancet 1, 965–968 (1977).

    Article  CAS  Google Scholar 

  15. Garrison, R.J. et al. Obesity and lipoprotein cholesterol in the Framingham Offspring Study. Metabolism 29, 1053–1060 (1983).

    Article  Google Scholar 

  16. Tanaka, N., Sakaguchi, S., Oshige, K., Niimura, T. & Kanehisa, T. Effect of chronic administration of propranalol on lipoprotein composition. Metabolism 25, 1071–1075 (1976).

    Article  CAS  Google Scholar 

  17. Schauer, I., Schauer, U., Ruhling, K. & Theilmann, K. The effect of propranalol treatment on total cholesterol, HDL cholesterol, triglycerides, postheparin lipolytic activity and lecithin cholesterol acyltransferase in hypertensive individuals. Artery 8, 146–150 (1980).

    CAS  PubMed  Google Scholar 

  18. Garrison, R.J. et al. Cigarette smoking and HDL cholesterol on fasting triglyceride, total cholesterol and HD-cholesterol in women.An. Heart J. 105, 417–421 (1983).

    Article  Google Scholar 

  19. Chamberlain, J.C., Thorn, A., Oka, K., Galton, D.J. & Stocks, J. DNA polymorphisms at the lipoprotein lipase gene: associations in normal and hypertriglyceridaemic subjects. Atherosclerosis 79, 85–91 (1989).

    Article  CAS  Google Scholar 

  20. Heizmann, C. et al. DNA polymorphism haplotypes of the human lipoprotein lipase gene: possible association with high density lipoprotein levels. Hum. Genet. 86, 578–584 (1991).

    Article  CAS  Google Scholar 

  21. Antonarakis, S.E., Kazazian, H.H. & Orkin, S.H. DNA polymorphism and molecular pathology of the human globin gene cluster. Hum. Genet. 59, 1–14 (1985).

    Article  Google Scholar 

  22. Ma, Y. et al. High frequency of mutations in the human lipoprotein lipase gene in pregnancy-induced chylomicronemia: possible association with apolipoprotein E2 isoform. J. Lipid Res. 35, 1066–1075 (1994).

    CAS  PubMed  Google Scholar 

  23. Zilversmit, D.B. A proposal linking atherogenesis to the interaction of endothelial lipoprotein lipase with triglyceride-rich lipoproteins. Circ. Res. 33, 633–638 (1973).

    Article  CAS  Google Scholar 

  24. Herttuala, S.Y. et al. Macrophages and smooth muscle cells express lipoprotein lipase in human and rabbit atherosclerotic lesions. Proc. natn. Acad. Sci. U.S.A. 88, 10143–10147 (1991).

    Article  Google Scholar 

  25. Saxena, U., Klein, M.G., Vanni, T.M. & Goldberg, I.J. Lipoprotein lipase increases low density lipoprotein retention by subendothelial cell matrix. J. din. Invest. 89, 373–380 (1992).

    CAS  Google Scholar 

  26. Shimada, M. et al. Overexpression of human lipoprotein lipase in transgenic mice. J. biol. Chem. 268, 17924–17929 (1993).

    CAS  PubMed  Google Scholar 

  27. Liu, M.S. et al. Alteration of lipid profiles in plasma of transgenic mice expressing human lipoprotein lipase. J. biol. Chem. 269, 11417–11424 (1994).

    CAS  PubMed  Google Scholar 

  28. Tsutumi, K. et al. The novel compound NO-1886 increases lipoprotein lipase activity with resulting elevation of high density and long-term administration inhibits atherogenesis in the coronary arteries of rats with experimental atherosclerosis. J. din. Invest. 92, 411–417 (1993).

    Google Scholar 

  29. Wilson, D.E. et al. Phenotypic expression of heterzygous lipoprotein lipase deficiency in the extended pedigree of a proband homozygous for a missense mutation. J. din. Invest. 86, 735–750 (1990).

    CAS  Google Scholar 

  30. Miesenbock, G. et al. Heterozygous lipoprotein lipase deficiency due to a missense mutation as the cause of impaired triglyceride tolerance with mutliple lipoprotein abnormalities. J. clin. Invest. 91, 448–455 (1993).

    Article  CAS  Google Scholar 

  31. Verschuren, W.M.M. et al. Cardiovascular risk factors in the Netherlands. Neth. J. Cardiol. 4, 205–210 (1993).

    Google Scholar 

  32. Allain, C.C., Poon, L.S., Chan, C.S.G., Richmond, W. & Fu, P.C. Enzymatic determination of total serum cholesterol. Clin. Chem. 20, 470–475 (1974).

    CAS  PubMed  Google Scholar 

  33. Buccolo, G. & David, H. Quantitative determination of serum triglycerides by the use of enzymes. Clin. Chem. 19, 476–482 (1973).

    Google Scholar 

  34. Warnick, G.R. & Albers, J.J. Heparin-Mn2+ quantification of high density lipoprotein cholesterol: an ultrafiltration procedure for lipidemic samples. Clin. Chem. 24, 900–904 (1978).

    CAS  PubMed  Google Scholar 

  35. Babirak, S.P., Iverius, P.H., Fujomoto, W.Y. & Brunzell, J.D. Detection and characterization of heterozygous state for lipoprotein lipase deficiency. Arteriosclerosis 9, 326–334 (1989).

    Article  CAS  Google Scholar 

  36. Iverius, P.H. & Brunzell, J.D. Human adipose tissue lipoiprotein lipase: changes with feeding and relationship to postheparin plasma enzyme. Am. J. Physiol. 249, E107–E114 (1985).

    CAS  PubMed  Google Scholar 

  37. Liu, M.S., Ma, Y., Hayden, M.R. & Brunzell, J.D. Mapping of the epitope on lipoprotein lipase recognized by a monoclonal antibody (5D2) which inhibits lipase activity. Biophys. Acta. 128, 113–115 (1992).

    Article  Google Scholar 

  38. Tips: an efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 5, 391 (1989).

  39. Bruin, T., Reymer, P.W.A., Groenemeyer, B.E., Talmud, P.J. & Kastelein, J.J.P. Hindlll polymorphism in the LPL-gene detected by PCR. Nud. Acids Res. 19, 6346 (1992).

    Article  Google Scholar 

  40. Johnson, J.P., Nishina, P.M. & Naggert, J.K. PCR assay for a polymorhic Pvull site in the lipoprotein lipase gene. Nud. Acids Res. 18, 7469 (1992).

    Article  Google Scholar 

  41. Ma, Y. et al. Two naturally occurring mutations at the first and second base of codon Asp156 in the proposed catalytic triad of human lipoprotein lipase — in vivo evidence that Asp156 is essential for catalysis. J. biol. Chem. 267, 1918–1923 (1992).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reymer, P., Gagné, E., Groenemeyer, B. et al. A lipoprotein lipase mutation (Asn291Ser) is associated with reduced HDL cholesterol levels in premature atherosclerosis. Nat Genet 10, 28–34 (1995). https://doi.org/10.1038/ng0595-28

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0595-28

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing