Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Repeat-induced gene silencing in mammals

Abstract

In both plants1–3 and Drosophila melanogastei4,5. expression from a transgenic locus may be silenced when repeated trans-gene copies are arranged as a concatameric array. This repeat-induced gene silencing is frequently manifested as a decrease in the proportion of cells that express the transgene, resulting in a variegated pattern of expression. There is also some indication that, in transgenic mammals, the number of transgene copies within an array can exert a repressive influence on expression, with several mouse studies reporting a decrease in the level of expression per copy as copy number increases6–8. However, because these studies compare different sites of transgene integration as well as arrays with different numbers of copies, the expression levels observed may be subject to varying position effects as well as the influence of the multicopy array. Here we describe use of the loxCre system of site-specific recombination to generate transgenic mouse lines in which different numbers of a transgene are present at the same chromosomal location, thereby eliminating the contribution of position effects and allowing analysis of the effect of copy number alone on transgene silencing. Reduction in copy number results in a marked increase in expression of the transgene and is accompanied by decreased chromatin compaction and decreased methylation at the transgene locus. These findings establish that the presence of multiple homologous copies of a transgene within a concatameric array can have a repressive effect upon gene expression in mammalian systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Linn, F., Heidmann, I., Saedler, H. & Meyer, P. Epigenetic changes in the expression of the maize A1 gene in Petunia hybrida: role of numbers of integrated gene copies and state of methylation. Mol. Gen. Genet. 222, 329–336 (1990)

    Article  CAS  Google Scholar 

  2. Scheid, O.M., Paszkowski, J. & Potrykus, I. Reversible inactivation of a transgene in Arabidopsis thaliana. Mol. Gen. Genet. 228, 104–112 (1991)

    Article  Google Scholar 

  3. Assaad, F.F., Tucker, K.L. & Signer, E.R. Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis. Plant Mol. Biol. 22, 1067–1085 (1993)

    Article  CAS  Google Scholar 

  4. Dorer, D.R. & Henikoff, S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77, 1–20 (1994)

    Article  Google Scholar 

  5. Sabl, J.F. & Henikoff, S. Copy number and orientation determine the susceptibility of a gene to silencing by nearby heterochromatin in Drosophila. Genetics 142, 447–458 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Davis, B.P. & MacDonald, R.J. Limited transcription of rat elastase I transgene repeats in transgenic mice. Genes Dev: 2, 13–22 (1988)

    Article  CAS  Google Scholar 

  7. Dorer, D.R. Do transgene arrays form heterochromatin in vertebrates? Transgenic Res. 6, 3–10 (1997)

    Article  CAS  Google Scholar 

  8. Sharpe, J.A. et al. Analysis of the human α-globin gene cluster in transgenic mice. Proc. Natl. Acad. Sci. USA 90, 11262–11266 (1993)

    Article  CAS  Google Scholar 

  9. Higgs, D.R. et al. A major positive regulatory region located far upstream of the human α-globin gene locus. Genes Dev. 4, 1588–1601 (1990)

    Article  CAS  Google Scholar 

  10. Robertson, G. et al. Position-dependent variegation of globin transgene expression in mice. Proc. Natl. Acad. Sci. USA 92, 5371–5375 (1995)

    Article  CAS  Google Scholar 

  11. Hoess, R.H. & Abremski, K. Interaction of the bacteriophage P1 recombinase Cre with the recombining site loxP. Proc. Natl. Acad. Sci. USA 81, 1026–1029 (1984)

    Article  CAS  Google Scholar 

  12. Lakso, M. et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. USA 93, 5860–5865 (1996)

    Article  CAS  Google Scholar 

  13. Palmiter, R.D. & Brinster, R.L. Germ-line transformation of mice. Annu. Rev. Genet. 20, 465–499 (1986)

    Article  CAS  Google Scholar 

  14. Araki, K., Araki, M., Miyazaki, J.-L. & Vassalli, P. Site-specific recombination of a transgene in fertilized eggs by transient expression of Cre recombinase. Proc. Natl. Acad. Sci. USA 92, 160–164 (1995)

    Article  CAS  Google Scholar 

  15. Robertson, G., Garrick, D., Wilson, M., Martin, D.I.K. & Whitelaw, E. Age-dependent silencing of globin transgenes in the mouse.Nucleic Acids Res. 24, 1465–1471 (1996)

    Article  CAS  Google Scholar 

  16. Sutherland, H.G.E., Martin, D.I.K. & Whitelaw, E. A globin enhancer acts by increasing the proportion of erythrocytes expressing a linked transgene. Mol. Cell. Biol. 17, 1607–1614 (1997)

    Article  CAS  Google Scholar 

  17. Meyer, P., Heidmann, I. & Niedenhof, I. Differences in DNA-methylation areassociated with a paramutation phenomenon in transgenic petunia. Plant J. 4, 89–100 (1993)

    Article  CAS  Google Scholar 

  18. Neuhuber, F., Park, Y.-D., Matzke, A.J.M. & Matzke, M.A. Susceptibility of transgene loci to homology-dependent gene silencing. Mol. Gen. Genet. 244, 230–241 (1994)

    Article  CAS  Google Scholar 

  19. Ye, F. & Signer, E.R. RIGS (repeat-induced gene silencing) in Arabidopsis is transcriptional and alters chromatin configuration. Proc. Natl. Acad. Sci. USA 93, 10881–10886 (1996)

    Article  CAS  Google Scholar 

  20. de Carvalho, F. et al. Suppression of β-1,3-glucanase transgene expression in homozygous plants. EMBO J. 11, 2595–2602 (1992)

    Article  CAS  Google Scholar 

  21. Ingelbrecht, I., Van Houdt, H., Van Montagu, M. & Depicker, A. Posttranscriptional silencing of reporter transgenes in tobacco correlates with DNA methylation. Proc. Natl. Acad. Sci. USA 91, 10502–10506 (1994)

    Article  CAS  Google Scholar 

  22. Bresnick, E.H. & Felsenfeld, G. Dual promoter activation by the human β-globin locus control region. Proc. Natl. Acad. Sci. USA 91, 1314–1317 (1994)

    Article  CAS  Google Scholar 

  23. Martin, D.I.K. & Whitelaw, E. The vagaries of variegating transgenes. Bioessays 18, 919–923 (1996)

    Article  CAS  Google Scholar 

  24. Grosveld, F., van Assendelft, G.B., Greaves, D.R. & Kollias, G. Position-independent, high-level expression of the human β-globin gene in transgenic mice.Cell 51, 975–985 (1987)

    Article  CAS  Google Scholar 

  25. Ryan, T.M. et al. A single erythroid specific DNase I superhypersensitive site activates high levels of human β-globin gene expression in transgenic mice. Genes Dev. 3, 314–323 (1989)

    Article  CAS  Google Scholar 

  26. Matzke, M.A., Priming, M., Trnovsky, J. & Matzke, A.J.M. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants.EMBOJ. 8, 643–649 (1989)

    Article  CAS  Google Scholar 

  27. Rhounim, L., Rossignol, J.-L. & Faugeron, G. Epimutation of repeated genes in Ascobulus immersus. EMBO J. 11, 4451–4457 (1992)

    Article  CAS  Google Scholar 

  28. Urieli-Shoval, S., Gruenbaum, Y., Sedat, J. & Razin, A. The absence of detectable methylated bases in Drosophila melanogaster DNA. FEBS Lett. 146, 148–152 (1982)

    Article  CAS  Google Scholar 

  29. Garrick, D., Sutherland, H., Robertson, G. & Whitelaw, E. Variegated expression of a globin transgene correlates with chromatin accessibility but not methylation status. Nucleic Acids Res. 24, 4902–4909 (1996)

    Article  CAS  Google Scholar 

  30. Pondel, M.D., Proudfoot, N.J., Whitelaw, C. & Whitelaw, E. The developmental regulation of the human ζ-globin gene in transgenic mice employing β-galactosidase as a reporter gene. Nucleic Acids Res. 20, 5655–5660 (1992)

    Article  CAS  Google Scholar 

  31. Whitelaw, E. & Proudfoot, N. α-Thalassaemia caused by a poly(A) site mutation reveals that transcriptional termination is linked to 3′ end processing in the human cc2 globin gene. EMBOJ. 5, 2915–2922 (1986)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrick, D., Fiering, S., Martin, D. et al. Repeat-induced gene silencing in mammals. Nat Genet 18, 56–59 (1998). https://doi.org/10.1038/ng0198-56

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0198-56

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing