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Prediction of seasonal climate-induced variations
in global food production
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Molly E. Brown7, Gen Sakurai1 and Toshio Yamagata3

Consumers, including the poor in many countries, are
increasingly dependent on food imports1 and are thus exposed
to variations in yields, production and export prices in themajor
food-producing regions of theworld. National governments and
commercial entities are therefore paying increased attention to
the cropping forecasts of important food-exporting countries
as well as to their own domestic food production. Given the
increased volatility of food markets and the rising incidence
of climatic extremes affecting food production, food price
spikes may increase in prevalence in future years2–4. Here
we present a global assessment of the reliability of crop
failure hindcasts for major crops at two lead times derived by
linking ensemble seasonal climatic forecasts with statistical
crop models. We found that moderate-to-marked yield loss
over a substantial percentage (26–33%) of the harvested
area of these crops is reliably predictable if climatic forecasts
are near perfect. However, only rice and wheat production
are reliably predictable at three months before the harvest
using within-season hindcasts. The reliabilities of estimates
varied substantially by crop—rice and wheat yields were
the most predictable, followed by soybean and maize. The
reasons for variation in the reliability of the estimates included
the differences in crop sensitivity to the climate and the
technology used by the crop-producing regions. Our findings
reveal that the use of seasonal climatic forecasts to predict
crop failures will be useful for monitoring global food pro-
duction and will encourage the adaptation of food systems to
climatic extremes.

Although global crop monitoring and yield prediction models
(for example, the Global Information and Early Warning System
of the Food and Agriculture Organization of the United Nations5
and the Famine Early Warning Systems Network6) have been
developed, few studies have evaluated the reliability of seasonal
climatic forecast-based cropping predictions on a global scale.
However, global commodity markets are essential to maintaining
national food balances and affordable access for consumers,
including the poor7,8. Large increases in food prices since 2008,
occurring as a result of the widespread drought in crop-
export regions in 2008 and 2012, coupled with a transforming
food system (that is, the increasing production of biofuels)
increase the importance of being able to anticipate large changes
in food production9–11. These changes affect both the rural
and urban poor who are reliant on imports from the global
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commodity market to ensure that a sufficient amount of food is
available to meet demand.

We conducted a global overview of the reliability of crop failure
forecasts for maize, rice, wheat and soybean, which are the principal
cereal and legume crops worldwide, providing nearly 60% of all
calories produced on croplands12. The key question posedwas:How
reliable is the forecasting of crop failure at lead times that allow
such information to be of value to governments and commercial
concerns? Previous work on this topic focused on predicting
extreme events with either a smaller geographical focus13 or by using
methods that limited their usefulness in connection to broader
climate modelling efforts14.

We assessed the reliability of hindcasts (that is, retrospective
forecasts for the past) of crop yield loss relative to the previous
year for two lead times. Pre-season yield predictions employ
climatic forecasts and have lead times of approximately 3 to 5
months for providing information regarding variations in yields
for the coming cropping season (Fig. 1). Within-season yield
predictions use climatic forecasts with lead times of 1–3 months.
Pre-season predictions can be of value to national governments
and commercial concerns, complemented by subsequent updates
fromwithin-season predictions. The latter incorporate information
on the most recent climatic data for the upcoming period of
reproductive growth15. In addition to such predictions, hindcasts
using the reanalysed historical climatic data (that is, observations)
were performed to demonstrate the upper limit of the reliability
of crop forecasting.

Hindcasts using the reanalysed climatic data for the 1983–
2006 interval indicated that the upper limits of prediction of
moderate-to-marked (5%more) yield losses were reliably captured
(R2 ≥0.301when reported and hindcast yield losses were compared;
P < 0.05) by modelling from 26 to 33% of the total crop
areas harvested worldwide in 2000 (Fig. 2 and Supplementary
Table S1). These areas accounted for 28–40% of the world crop
production in that year. The reliability of the estimates of yield
levels (including values that were approximately normal or beyond
normal) when using the reanalysed climatic data was comparable
to that of the estimates of crop failures mentioned above (Fig. 2 and
Supplementary Information S1). If such reliability is to be realized
for not only crop failures but also yield levels, both temperature and
soil moisture forecasts must be near perfect.

When within-season hindcasts were evaluated, good reliability
was evident in a number of areas throughout the world, including
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Figure 1 | Timing of cropping predictions. The cropping calendar illustrates the times at which the pre- and within-season predictions of crop failures and
yield levels were conducted and the lead times of seasonal climatic forecasts on a monthly basis.
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Figure 2 | The upper limits of reliability when moderate-to-marked yield losses of maize, soybean, rice and wheat were hindcasted using reanalysis
data. White; yield losses were less reliably estimated (the coefficients of determination, R2, between the reported and hindcast yields over the 1983–2006
period <0.454, n= 10, P> 0.05). Orange; yield losses could be reliably estimated (R2 ≥ 0.454, n= 10, P< 0.05). Light grey; no hindcast were produced
because the crop calendar is lacking. Dark grey; non-cropland. The pie diagrams indicate the percentages of production from the areas. All data in the pie
diagrams are normalized against the world production in 2000.

major crop-producing regions, such as Southeast Asia for rice and
Australia for wheat (Fig. 3). With climatic hindcasts, the capability
of modelling was more distinct when identifying the occurrences of
crop failures than when predicting all of the year-to-year variations
in yield levels throughout the years (Fig. 3 and Supplementary
Information S2). Note, however, that reported crop yields are not
always reliable over the time series used in this analysis, and the
results for some countries should be interpretedwith caution.

Comparatively higher reliability of pre-season hindcasts was
found in areas with similar within-season hindcasts (for example,
Southeast Asia for rice; Supplementary Figs S3 and S4), although
such reliability gradually decreased with increasing lead time
(Supplementary Table S1), as has been previously reported16.
However, the ability of modelling to capture crop failures (17–21%
of total production; Supplementary Fig. S3 and Table S1) was still
higher in comparison with that of predicting yield levels (5–11% of
total production; Supplementary Fig S4 and Table S1).

Of the total crop area harvested worldwide, 15–19% (accounting
for 15–23% of production) appeared to be reliable when the
within-season crop failure hindcasts were evaluated (Fig. 3 and
Supplementary Table S1). This result indicates that the crop failure
hindcasts for all crops attained more than 50% of their predictive
potential whereas yield hindcasts achieved considerably less than
36% of their potential. For both crop failures and yield levels, the

hindcast values for rice and wheat, the production of which seems
to be more sensitive to temperature than to soil moisture content
(Fig. 4), were better at both lead times than the values obtained
from the random hindcasts (the comparisons were significant at
the 1% level and Supplementary Fig. S5). In contrast, the hindcast
values for maize and soybean conducted at both lead times (the
production of which is more sensitive to soil moisture content
than to temperature; Fig. 4) were not significantly better than the
random hindcast values (Supplementary Fig. S5).

The observed spread in hindcast yield reliability across different
crop types reflects the finding that temperature hindcasts are far
more reliable than predictions of soil moisture content at both lead
times (Supplementary Figs S6 and S7).Higher hindcast temperature
reliability plays a certain role with respect to gains in the reliability of
within-season cropping hindcasts in irrigated cropland, which cov-
ers approximately 20%of cultivated land and accounts for over 40%
of world production17, although more land area is rainfed (Supple-
mentary Fig. S8). This tendency is particularly true in irrigated areas
where yields are sensitive to temperature, probably because temper-
ature is a major driver of yield variations if a crop is irrigated suf-
ficiently, whereas the soil moisture content is still important under
insufficient irrigation conditions, as suggested by a previous study18.

In addition, the hindcast climatic reliability was higher when
data from low latitudes were evaluated rather than those from
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Figure 3 | The reliability of the within-season hindcasts of the moderate-to-marked (5%more) yield losses for maize, soybean, rice and wheat. The
legend for Fig. 2 is also applicable to this figure, although the within-season (and not the pre-season) hindcasts were derived. R2 < 0.301 and R2 ≥ 0.301
(both, n= 10, P< 0.05) were used for the areas in white and orange, respectively.
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Figure 4 | The dominant climatic factors affecting the year-to-year variations in the yields of maize, soybean, rice and wheat. The pie diagrams indicate
the percentages of production that are sensitive to temperature (orange) and soil moisture content (turquoise) as well as those for which no hindcasts
were available (grey) in 2000. The dark grey area indicates non-cropland.

the mid-to-high latitudes (Supplementary Figs S6 and S7); this
conclusion is similar to that obtained in earlier studies19. Of the
top four countries in terms of maize and soybean production
(the USA, Brazil, China and Argentina), all but Brazil are located
at mid-latitudes, whereas rice is widely produced (particularly
in the tropics) and wheat is grown more extensively worldwide
than any other crop (Supplementary Fig. S9 and Table S1).
For wheat in particular, the timing of the growing season is
important: a large proportion of wheat is grown in winter. Winter
climate forecasts in the Northern Hemisphere are typically more
accurate than summer forecasts because the extratropical winter
atmosphere is strongly influenced by events in tropical regions
and because the effects of tropical climatic variations on winter
climatic patterns in the Northern Hemisphere are stronger than on
that of the summer20. Owing to differences in the characteristics
of production systems, the reliability of the estimates of rice
and wheat yield losses was highest, distantly followed by those

of soybean and maize (Supplementary Fig. S5 and Table S1).
For the estimates of yield levels, wheat prediction was most
reliable, followed by the estimates of rice, soybean and maize
(Supplementary Table S1).

The relatively high reliability of hindcasts to capture the
crop failures of rice and wheat and to predict the year-to-year
variations in wheat yield levels in particular encouraged us to
extract further information. The areas for which within-season
hindcasts of yield levels are available include four of the major
wheat-exporting countries, namely, the USA, France, Canada and
Australia. Together, these regions produced 53%of the world wheat
export in 2008 (Supplementary Fig. S10). In these areas, within-
season hindcasts were reliable for 9% to 35% of the harvested area
(Fig. 5), suggesting that up to 11% of all wheat exports from these
four countries are predictable (27% of world wheat exports were
predictable when the data from all wheat-exporting countries were
considered; Supplementary Table S1). When the pre-season yield
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Figure 5 | The capture reliability of the year-to-year relative wheat yield variations (�Y) for the reliable areas in four major wheat-exporting countries
(the USA, France, Canada and Australia). The reported yields (black), pre-season hindcasts (green) and within-season hindcasts (red) are presented. The
r values are correlation coefficients, which were calculated by comparing the reported values with that obtained from the two hindcasts. All correlations
were significant at the 5% level. The numbers in parentheses are the percentages of areas for which yields were reliably predictable among all of the
harvested areas within each country.

hindcasts were evaluated, the area for which the predictions were
reliable was lower (1–32% of all harvested areas in the exporting
countries mentioned above; Fig. 5); however, the reliability level
was similar to that afforded by the analysis of within-season
hindcasts from the USA and Australia.

In contrast, the levels of rice exports that were reliably
predicted were far lower than those of wheat exports when the
yield hindcasts were evaluated but were comparable when the
crop failure hindcasts were assessed (Supplementary Table S1).
Notably, a considerable extent of the predictable area (52–78%
of the national harvested area) was found in the third major rice
exporter, Uruguay (Supplementary Fig. S11). The second-major
rice exporter, Thailand, exhibited even less predictable area (3%
of the national harvested area); although Thailand is located in the
tropics, this result is probably due to the lack of crop calendar data
for the triple cropping systems under operation in that region21

(T.I. et al. manuscript in preparation) and the higher sensitivity of
yields to soil moisture conditions (Fig. 4).

We found that the principal features of climate-induced crop
failures in a substantial percentage of the global crop-growing
regions were reliably predictable for rice and wheat but were
less predictable for maize and soybean. The particular features
of global production systems allow reliable estimates of crop
failure, including a notable association between crop yields and
ambient temperature, an extensive growth area worldwide (or
within the tropics), significant production from winter cropping,
and accurate estimates of winter temperatures. Notably, the areas
within which the occurrences of crop failures (or yield levels) are
reliably predictable include the countries that aremajor exporters of
wheat and rice. This finding suggests that modelling can potentially
yield information on the seasonal climate-induced variability in the
production levels of rice and wheat in major exporter countries
and that such estimates can be made available 3–5 months

before harvest. Such information would be of value to both
national governments and commercial entities for maintaining an
adequate national food balance and ensuring adequate responses
to major food crises. These data, when combined with satellite-
derived information on rainfall levels and the extent of vegetative
productivity22, can support a range of decisions, including the
adaptation of food systems for the poor to climatic extremes and,
ultimately, to climate change.

However, considerable work is required to produce opera-
tional forecasts because yield levels do not exclusively determine
the extent to which food is supplied to commodity markets
and prices. Sociopolitical factors (that is, the Russian wheat em-
bargo of 2010–201123) often critically influence the world food
supply and are often motivated by crop failures induced by
climatic extremes. Decision-makers struggle to respond within
a timely manner if predictions remain uncertain for even a
few months of lead24.

The predictions derived from the modelling presented here or
from more plant physiological process-based crop models of this
type16,25,26 can be used to establish a global crop failure prediction
system. Although process-based models may be promising at
specific sites16, there is a lack of global historical crop data sets,
which would be required for more sophisticated representations
of hybrid seeds, planting dates, and nitrogen, water and chemical
inputs. Furthermore, the methods of climate impact assessment
have tended to use yield variability as a measure of uncertainty,
instead of assessing changes in crop yield variability27. We
demonstrate the potential for skilful predictions of crop failures,
which in turn suggest that the limitation of qualitative methods can
be addressed. In demonstrating the potential value of quantitative
prediction methods, this study also supports evidence28 for the
potential use of such methods in regions where qualitative methods
dominate at present, for example, sub-Saharan Africa13.
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Methods
Climate and crop data for the 1982–2006 interval were collected by using a grid
with a resolution of 1.125◦ in both latitude and longitude. The temperature and soil
moisture data were downloaded from the JRA-25 monthly reanalysed data set29.
For each of the four crops, all reanalysed data were averaged over the reproductive
growth periods, as determined from the global crop calendar data set21. Thus,
the climatic features specific to individual locations, over the months of crop
growth, were considered.

Nine ensemble seasonal climatic hindcasts (three physically perturbed models,
for which three sets each of initial conditions were used) were generated by
using the SINTEX-F ocean/atmosphere-coupled general circulation model; the
prediction lead times ranged from 1 to 12 months20. The lead data for 1–3 and
3–5 months were averaged to yield the within-season and pre-season hindcasts,
respectively. Biases in the global climate model predictions for temperature and
soil moisture were removed before analysis.

Crop yields were obtained from the global historical yield data set (T.I. et al.
manuscript in preparation), which aligns the FAO yield data and grid yield proxy
information derived from satellite-derived net primary productivity.

The crop and climate data were combined as follows: a first-difference time
series was computed by using the yield levels and a reanalysis of the temperature and
soil moisture data; each first-difference yield was divided by the 3-year average of
the yield to derive the percentage first-difference values; a multiple linear regression
model was constructed for each cropping system; weighted-average yields were
calculated by using the production levels by cropping system as weighting factors;
regression coefficients were determined on a year-by-year basis by using the
leave-one-out cross-validation method; finally, all bias-corrected climatic forecasts
were subjected to regression modelling to derive the hindcast data (the percentage
changes in yield from that of the previous year).
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