Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sweet spots in functional glycomics

Abstract

Information contained in the mammalian glycome is decoded by glycan-binding proteins (GBPs) that mediate diverse functions including host-pathogen interactions, cell trafficking and transmembrane signaling. Although information on the biological roles of GBPs is rapidly expanding, challenges remain in identifying the glycan ligands and their impact on GBP function. Protein-glycan interactions are typically low affinity, requiring multivalent interactions to achieve a biological effect. Though many glycoproteins can carry the glycan structure recognized by the GBP, other factors, such as recognition of protein epitopes and microdomain localization, may restrict which glycoproteins are functional ligands in situ. Recent advances in development of glycan arrays, synthesis of multivalent glycan ligands, bioengineering of cell-surface glycans and glycomics databases are providing new tools to identify the ligands of GBPs and to elucidate the mechanisms by which they participate in GBP function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell-surface biology mediated by GBPs.
Figure 2: Methods for attachment of glycans to the surface of a microarray.
Figure 3: Strategies for assembling a diverse functionalized glycan library.
Figure 5: Biosynthetic engineering of cell glycans.
Figure 4: Glycan microarrays reveal novel glycan specificities of GBPs.
Figure 6: Biological assembly of multivalent ligands.

Similar content being viewed by others

Ieva Bagdonaite, Stacy A. Malaker, … Nichollas E. Scott

References

  1. Taylor, M.E. & Drickamer, K. in Introduction to Glycobiology (eds. Taylor, M.E. & Drickamer, K.) 1–224 (Oxford University Press, New York, 2003).

    Google Scholar 

  2. Varki, A. et al. in Essentials of Glycobiology (eds. Varki, A. et al.) 1–653 (Cold Springs Harbor Laboratory Press, Plainview, NY, USA, 1999).

    Google Scholar 

  3. Sharon, N. & Lis, H. in Lectins (eds. Sharon, N. & Lis, H.) 470 (Kluwer Academic Publishers, Dordrecht, Boston, 2004).

    Google Scholar 

  4. Ilver, D. et al. Bacterium-host protein-carbohydrate interactions. Methods Enzymol. 363, 134–157 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Dinglasan, R.R., Valenzuela, J.G. & Azad, A.F. Sugar epitopes as potential universal disease transmission blocking targets. Insect Biochem. Mol. Biol. 35, 1–10 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Gagneux, P. & Varki, A. Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9, 747–755 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Crocker, P.R. Siglecs in innate immunity. Curr. Opin. Pharmacol. 5, 431–437 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Varki, A. & Angata, T. Siglecs—the major subfamily of I-type lectins. Glycobiology 16, 1R–27R (2006).

    Google Scholar 

  9. Houzelstein, D. et al. Phylogenetic analysis of the vertebrate galectin family. Mol. Biol. Evol. 21, 1177–1187 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, F.T. & Rabinovich, G.A. Galectins as modulators of tumour progression. Nat. Rev. Cancer 5, 29–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Rabinovich, G.A. & Gruppi, A. Galectins as immunoregulators during infectious processes: from microbial invasion to the resolution of the disease. Parasite Immunol. 27, 103–114 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Paulson, J.C. in The Receptors (ed. Conn, P.M.) 131–219 (Academic Press Inc., New York, 1985).

    Book  Google Scholar 

  13. Smith, A.E. & Helenius, A. How viruses enter animal cells. Science 304, 237–242 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Dormitzer, P.R. et al. Specificity and affinity of sialic acid binding by the rhesus rotavirus VP8* core. J. Virol. 76, 10512–10517 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stehle, T. & Harrison, S.C. High-resolution structure of a polyomavirus VP1-oligosaccharide complex: implications for assembly and receptor binding. EMBO J. 16, 5139–5148 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Svanborg, C. et al. Uropathogenic Escherichia coli as a model of host-parasite interaction. Curr. Opin. Microbiol. 9, 33–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Walz, A., Odenbreit, S., Mahdavi, J., Boren, T. & Ruhl, S. Identification and characterization of binding properties of Helicobacter pylori by glycoconjugate arrays. Glycobiology 15, 700–708 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Smith, D.C., Lord, J.M., Roberts, L.M. & Johannes, L. Glycosphingolipids as toxin receptors. Semin. Cell Dev. Biol. 15, 397–408 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Ashwell, G. & Harford, J. Carbohydrate-specific receptors of the liver. Annu. Rev. Biochem. 51, 531–554 (1982).

    Article  CAS  PubMed  Google Scholar 

  20. Mi, Y., Shapiro, S.D. & Baenziger, J.U. Regulation of lutropin circulatory half-life by the mannose/N-acetylgalactosamine-4–SO4 receptor is critical for implantation in vivo. J. Clin. Invest. 109, 269–276 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cambi, A., Koopman, M. & Figdor, C.G. How C-type lectins detect pathogens. Cell. Microbiol. 7, 481–488 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Fujita, T., Matsushita, M. & Endo, Y. The lectin-complement pathway—its role in innate immunity and evolution. Immunol. Rev. 198, 185–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Geijtenbeek, T.B., van Vliet, S.J., Engering, A., 't Hart, B.A. & van Kooyk, Y. Self- and nonself-recognition by C-type lectins on dendritic cells. Annu. Rev. Immunol. 22, 33–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Kishore, U. et al. Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol. Immunol. 43, 1293–1315 (2005).

    Article  PubMed  CAS  Google Scholar 

  25. McGreal, E.P., Martinez-Pomares, L. & Gordon, S. Divergent roles for C-type lectins expressed by cells of the innate immune system. Mol. Immunol. 41, 1109–1121 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Takahashi, K. & Ezekowitz, R.A. The role of the mannose-binding lectin in innate immunity. Clin. Infect. Dis. 41(Suppl.), S440–S444 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Die, I. & Cummings, R.D. Glycans modulate immune responses in helminth infections and allergy. Chem. Immunol. Allergy 90, 91–112 (2006).

    PubMed  Google Scholar 

  28. Brown, G.D. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 6, 33–43 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Brewer, C.F., Miceli, M.C. & Baum, L.G. Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr. Opin. Struct. Biol. 12, 616–623 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Takahashi, K., Ip, W.E., Michelow, I.C. & Ezekowitz, R.A. The mannose-binding lectin: a prototypic pattern recognition molecule. Curr. Opin. Immunol. 18, 16–23 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Taylor, P.R., Gordon, S. & Martinez-Pomares, L. The mannose receptor: linking homeostasis and immunity through sugar recognition. Trends Immunol. 26, 104–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Collins, B.E., Smith, B.A., Bengtson, P. & Paulson, J.C. Ablation of CD22 in ligand-deficient mice restores B cell receptor signaling. Nat. Immunol. 7, 199–206 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Tedder, T.F., Poe, J.C. & Haas, K.M. CD22: a multifunctional receptor that regulates B lymphocyte survival and signal transduction. Adv. Immunol. 88, 1–50 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Dai, S.Y. et al. Galectin-9 induces maturation of human monocyte-derived dendritic cells. J. Immunol. 175, 2974–2981 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Delacour, D. et al. Galectin-4 and sulfatides in apical membrane trafficking in enterocyte-like cells. J. Cell Biol. 169, 491–501 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lowe, J.B. Glycosyltransferases and glycan structures contributing to the adhesive activities of L-, E- and P-selectin counter-receptors. Biochem. Soc. Symp. 69, 33–45 (2002).

    Article  CAS  Google Scholar 

  37. Wang, L., Fuster, M., Sriramarao, P. & Esko, J.D. Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat. Immunol. 6, 902–910 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Morris, M.A. & Ley, K. Trafficking of natural killer cells. Curr. Mol. Med. 4, 431–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Yoneyama, H., Matsuno, K. & Matsushimaa, K. Migration of dendritic cells. Int. J. Hematol. 81, 204–207 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. van Gisbergen, K.P., Geijtenbeek, T.B. & van Kooyk, Y. Close encounters of neutrophils and DCs. Trends Immunol. 26, 626–631 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Venkatesh, K. et al. The Nogo-66 receptor homolog NgR2 is a sialic acid-dependent receptor selective for myelin-associated glycoprotein. J. Neurosci. 25, 808–822 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Katayama, Y., Hidalgo, A., Chang, J., Peired, A. & Frenette, P.S. CD44 is a physiological E-selectin ligand on neutrophils. J. Exp. Med. 201, 1183–1189 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Satoh, T., Kaneko, M., Wu, M.H., Yokozeki, H. & Nishioka, K. Contribution of selectin ligands to eosinophil recruitment into the skin of patients with atopic dermatitis. Eur. J. Immunol. 32, 1274–1281 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Somers, W.S., Tang, J., Shaw, G.D. & Camphausen, R.T. Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell 103, 467–479 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Han, S., Collins, B.E., Bengston, P. & Paulson, J.C. Homo-multimeric complexes of CD22 in B cells revealed by protein-glycan crosslinking. Nat. Chem. Biol. 1, 93–97 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Disney, M.D. & Seeberger, P.H. The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. Chem. Biol. 11, 1701–1707 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Feizi, T. & Chai, W. Oligosaccharide microarrays to decipher the glyco code. Nat. Rev. Mol. Cell Biol. 5, 582–588 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Feizi, T., Fazio, F., Chai, W. & Wong, C.H. Carbohydrate microarrays—a new set of technologies at the frontiers of glycomics. Curr. Opin. Struct. Biol. 13, 637–645 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Shin, I., Park, S. & Lee, M.R. Carbohydrate microarrays: an advanced technology for functional studies of glycans. Chemistry (Easton) 11, 2894–2901 (2005).

    CAS  Google Scholar 

  50. Blixt, O. & Razi, N. in Synthesis of Carbohydrates through Biotechnology (eds. Wang, P.G. & Ichikawa, Y.) 93–112 (American Chemical Society, Washington, DC, 2004).

    Book  Google Scholar 

  51. Hanson, S., Best, M., Bryan, M.C. & Wong, C.H. Chemoenzymatic synthesis of oligosaccharides and glycoproteins. Trends Biochem. Sci. 29, 656–663 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Seeberger, P.H. & Werz, D.B. Automated synthesis of oligosaccharides as a basis for drug discovery. Nat. Rev. Drug Discov. 4, 751–763 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Magnani, J.L., Smith, D.F. & Ginsburg, V. Detection of gangliosides that bind cholera toxin: direct binding of 125I-labeled toxin to thin-layer chromatograms. Anal. Biochem. 109, 399–402 (1980).

    Article  CAS  PubMed  Google Scholar 

  54. Tang, P.W. & Feizi, T. Neoglycolipid micro-immunoassays applied to the oligosaccharides of human milk galactosyltransferase detect blood-group related antigens on both O- and N-linked chains. Carbohydr. Res. 161, 133–143 (1987).

    Article  CAS  PubMed  Google Scholar 

  55. Tang, P.W., Gool, H.C., Hardy, M., Lee, Y.C. & Feizi, T. Novel approach to the study of the antigenicities and receptor functions of carbohydrate chains of glycoproteins. Biochem. Biophys. Res. Commun. 132, 474–480 (1985).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, D., Liu, S., Trummer, B.J., Deng, C. & Wang, A. Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat. Biotechnol. 20, 275–281 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Willats, W.G., Rasmussen, S.E., Kristensen, T., Mikkelsen, J.D. & Knox, J.P. Sugar-coated microarrays: a novel slide surface for the high-throughput analysis of glycans. Proteomics 2, 1666–1671 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Ko, K.S., Jaipuri, F.A. & Pohl, N.L. Fluorous-based carbohydrate microarrays. J. Am. Chem. Soc. 127, 13162–13163 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Bochner, B.S. et al. Glycan array screening reveals a candidate ligand for Siglec-8. J. Biol. Chem. 280, 4307–4312 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Galanina, O.E., Mecklenburg, M., Nifantiev, N.E., Pazynina, G.V. & Bovin, N.V. GlycoChip: multiarray for the study of carbohydrate-binding proteins. Lab Chip 3, 260–265 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Park, S. & Shin, I. Fabrication of carbohydrate chips for studying protein-carbohydrate interactions. Angew. Chem. Int. Edn. Engl. 41, 3180–3182 (2002).

    Article  CAS  Google Scholar 

  62. Dyukova, V.I. et al. Hydrogel glycan microarrays. Anal. Biochem. 347, 94–105 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Blixt, O. et al. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. USA 101, 17033–17038 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bryan, M.C., Lee, L.V. & Wong, C.H. High-throughput identification of fucosyltransferase inhibitors using carbohydrate microarrays. Bioorg. Med. Chem. Lett. 14, 3185–3188 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Mrksich, M. An early taste of functional glycomics. Chem. Biol. 11, 739–740 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Angeloni, S. et al. Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology 15, 31–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Garegg, P.J. Synthesis and reactions of glycosides. Adv. Carbohydr. Chem. Biochem. 59, 69–134 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Nicolaou, K.C. & Mitchell, H.J. Adventures in carbohydrate chemistry: new synthetic technologies, chemical synthesis, molecular design, and chemical biology. Angew. Chem. Int. Edn Engl. 40, 1576–1624 (2001).

    Article  CAS  Google Scholar 

  69. Tanaka, H., Adachi, M. & Takahashi, T. One-pot synthesis of sialo-containing glycosyl amino acids by use of an N-trichloroethoxycarbonyl-β-thiophenyl sialoside. Chemistry (Easton) 11, 849–862 (2005).

    CAS  Google Scholar 

  70. Ye, X.S. & Wong, C.H. Anomeric reactivity-based one-pot oligosaccharide synthesis: a rapid route to oligosaccharide libraries. J. Org. Chem. 65, 2410–2431 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Endo, T., Koizumi, S., Tabata, K., Kakita, S. & Ozaki, A. Large-scale production of N-acetyllactosamine through bacterial coupling. Carbohydr. Res. 316, 179–183 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Blixt, O., Collins, B.E., van den Nieuwenhof, I.M., Crocker, P.R. & Paulson, J.C. Sialoside specificity of the siglec family assessed using novel multivalent probes: identification of potent inhibitors of myelin-associated glycoprotein. J. Biol. Chem. 278, 31007–31019 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Blixt, O. et al. Chemoenzymatic synthesis of 2-azidoethyl-ganglio-oligosaccharides GD3, GT3, GM2, GD2, GT2, GM1, and GD1a. Carbohydr. Res. 340, 1963–1972 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Campbell, C.T. & Yarema, K.J. Large-scale approaches for glycobiology. Genome Biol. 6, 236 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Hirabayashi, J. Lectin-based structural glycomics: glycoproteomics and glycan profiling. Glycoconj. J. 21, 35–40 (2004).

    Article  PubMed  Google Scholar 

  76. Kajihara, Y., Yamamoto, N., Miyazaki, T. & Sato, H. Synthesis of diverse asparagine linked oligosaccharides and synthesis of sialylglycopeptide on solid phase. Curr. Med. Chem. 12, 527–550 (2005).

    CAS  PubMed  Google Scholar 

  77. Hackenberger, C.P., O'Reilly, M.K. & Imperiali, B. Improving glycopeptide synthesis: a convenient protocol for the preparation of β-glycosylamines and the synthesis of glycopeptides. J. Org. Chem. 70, 3574–3578 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Xia, B. et al. Versatile fluorescent derivatization of glycans for glycomic analysis. Nat. Methods 2, 845–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Guo, Y. et al. Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat. Struct. Mol. Biol. 11, 591–598 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. van Vliet, S.J. et al. Carbohydrate profiling reveals a distinctive role for the C-type lectin MGL in the recognition of helminth parasites and tumor antigens by dendritic cells. Int. Immunol. 17, 661–669 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. McGreal, E.P. et al. The carbohydrate recognition domain of dectin-2 is a C-type lectin with specificity for high-mannose. Glycobiology, published online 19 January 2006 (doi:10.1093/glycob/cwj077).

    Google Scholar 

  82. Galustian, C. et al. High and low affinity carbohydrate ligands revealed for murine SIGN-R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN-R3 and langerin. Int. Immunol. 16, 853–866 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Schwarz, M. et al. A new kind of carbohydrate array, its use for profiling antiglycan antibodies, and the discovery of a novel human cellulose-binding antibody. Glycobiology 13, 749–754 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Nimrichter, L. et al. Intact cell adhesion to glycan microarrays. Glycobiology 14, 197–203 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Wang, R., Liu, S., Shah, D. & Wang, D. A practical protocol for carbohydrate microarrays. Methods Mol. Biol. 310, 241–252 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Coombs, P.J., Graham, S.A., Drickamer, K. & Taylor, M.E. Selective binding of the scavenger receptor C-type lectin to Lewis(x)trisaccharide and related glycan ligands. J. Biol. Chem. 280, 22993–22999 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Palma, A.S. et al. Ligands for the β-glucan receptor, dectin-1, assigned using 'designer' microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J. Biol. Chem. 281, 5771–5779 (2005).

    Article  PubMed  CAS  Google Scholar 

  88. Tateno, H., Crocker, P.R. & Paulson, J.C. Mouse Siglec-F and human Siglec-8 are functionally convergent paralogs that are selectively expressed on eosinophils and recognize 6'-sulfo-sialyl Lewis X as a preferred glycan ligand. Glycobiology 15, 1125–1135 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Stevens, J. et al. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J. Mol. Biol. 355, 1143–1155 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Huflejt, M.E. et al. Glycan array identifies specific signatures of anti-glycan autoantibodies in sera of breast cancer patients: diagnostic, prognostic and therapeutic opportunities. Breast Cancer Res. Treat. 94, S85 (2005).

    Google Scholar 

  91. Huang, C.Y. et al. Carbohydrate microarray for profiling the antibodies interacting with Globo H tumor antigen. Proc. Natl. Acad. Sci. USA 103, 15–20 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Lawrie, C.H. et al. Cancer-associated carbohydrate identification in Hodgkin's lymphoma by carbohydrate array profiling. Int. J. Cancer, published online 4 January 2006 (doi:10.1002/iij.21762).

  93. Manimala, J.C., Li, Z., Jain, A., Vedbrat, S. & Gildersleeve, J.C. Carbohydrate array analysis of anti-Tn antibodies and lectins reveals unexpected specificities: implications for diagnostic and vaccine development. Chembiochem 6, 2229–2241 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Pilobello, K.T., Krishnamoorthy, L., Slawek, D. & Mahal, L.K. Development of a lectin microarray for the rapid analysis of protein glycopatterns. ChemBioChem 6, 985–989 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Zheng, T., Peelen, D. & Smith, L.M. Lectin arrays for profiling cell surface carbohydrate expression. J. Am. Chem. Soc. 127, 9982–9983 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Hsu, K.L., Pilobello, K.T. & Mahal, L.K. Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nat. Chem. Biol. 2, 153–157 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Kayser, H. et al. Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-D-hexosamines as precursors. J. Biol. Chem. 267, 16934–16938 (1992).

    CAS  PubMed  Google Scholar 

  98. Kayser, H., Geilen, C.C., Paul, C., Zeitler, R. & Reutter, W. Incorporation of N-acyl-2-amino-2-deoxy-hexoses into glycosphingolipids of the pheochromocytoma cell line PC 12. FEBS Lett. 301, 137–140 (1992).

    Article  CAS  PubMed  Google Scholar 

  99. Keppler, O.T. et al. Biosynthetic modulation of sialic acid-dependent virus-receptor interactions of two primate polyoma viruses. J. Biol. Chem. 270, 1308–1314 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Dube, D.H. & Bertozzi, C.R. Metabolic oligosaccharide engineering as a tool for glycobiology. Curr. Opin. Chem. Biol. 7, 616–625 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Bertozzi, C.R. & Kiessling, L.L. Chemical glycobiology. Science 291, 2357–2364 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Keppler, O.T., Horstkorte, R., Pawlita, M., Schmidt, C. & Reutter, W. Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiology 11, 11R–18R (2001).

    Google Scholar 

  103. Prescher, J.A., Dube, D.H. & Bertozzi, C.R. Chemical remodelling of cell surfaces in living animals. Nature 430, 873–877 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Luchansky, S.J., Goon, S. & Bertozzi, C.R. Expanding the diversity of unnatural cell-surface sialic acids. ChemBioChem 5, 371–374 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Prescher, J.A. & Bertozzi, C.R. Chemistry in living systems. Nat. Chem. Biol. 1, 13–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Angata, T. & Varki, A. Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem. Rev. 102, 439–469 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Jones, M.B. et al. Characterization of the cellular uptake and metabolic conversion of acetylated N-acetylmannosamine (ManNAc) analogues to sialic acids. Biotechnol. Bioeng. 85, 394–405 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Horstkorte, R., Rau, K., Laabs, S., Danker, K. & Reutter, W. Biochemical engineering of the N-acyl side chain of sialic acid leads to increased calcium influx from intracellular compartments and promotes differentiation of HL60 cells. FEBS Lett. 571, 99–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Collins, B.E., Fralich, T.J., Itonori, S., Ichikawa, Y. & Schnaar, R.L. Conversion of cellular sialic acid expression from N-acetyl- to N-glycolylneuraminic acid using a synthetic precursor, N-glycolylmannosamine pentaacetate: inhibition of myelin-associated glycoprotein binding to neural cells. Glycobiology 10, 11–20 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Charter, N.W., Mahal, L.K., Koshland, D.E., Jr & Bertozzi, C.R. Biosynthetic incorporation of unnatural sialic acids into polysialic acid on neural cells. Glycobiology 10, 1049–1056 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Charter, N.W., Mahal, L.K., Koshland, D.E.,Jr & Bertozzi, C.R. Differential effects of unnatural sialic acids on the polysialylation of the neural cell adhesion molecule and neuronal behavior. J. Biol. Chem. 277, 9255–9261 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Goon, S., Schilling, B., Tullius, M.V., Gibson, B.W. & Bertozzi, C.R. Metabolic incorporation of unnatural sialic acids into Haemophilus ducreyi lipooligosaccharides. Proc. Natl. Acad. Sci. USA 100, 3089–3094 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Horstkorte, R., Rau, K., Reutter, W., Nohring, S. & Lucka, L. Increased expression of the selectin ligand sialyl-Lewis(x) by biochemical engineering of sialic acids. Exp. Cell Res. 295, 549–554 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Luchansky, S.J. & Bertozzi, C.R. Azido sialic acids can modulate cell-surface interactions. ChemBioChem 5, 1706–1709 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Vocadlo, D.J., Hang, H.C., Kim, E.J., Hanover, J.A. & Bertozzi, C.R. A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc. Natl. Acad. Sci. USA 100, 9116–9121 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hang, H.C., Yu, C., Kato, D.L. & Bertozzi, C.R. A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation. Proc. Natl. Acad. Sci. USA 100, 14846–14851 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Saxon, E. et al. Investigating cellular metabolism of synthetic azidosugars with the Staudinger ligation. J. Am. Chem. Soc. 124, 14893–14902 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Fuster, M.M. & Esko, J.D. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer 5, 526–542 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Fuster, M.M., Brown, J.R., Wang, L. & Esko, J.D. A disaccharide precursor of sialyl Lewis X inhibits metastatic potential of tumor cells. Cancer Res. 63, 2775–2781 (2003).

    CAS  PubMed  Google Scholar 

  120. Collins, B.E. & Paulson, J.C. Cell surface biology mediated by low affinity multivalent protein-glycan interactions. Curr. Opin. Chem. Biol. 8, 617–625 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Gestwicki, J.E., Cairo, C.W., Strong, L.E., Oetjen, K.A. & Kiessling, L.L. Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. J. Am. Chem. Soc. 124, 14922–14933 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Lundquist, J.J. & Toone, E.J. The cluster glycoside effect. Chem. Rev. 102, 555–578 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Nishikawa, K. et al. A therapeutic agent with oriented carbohydrates for treatment of infections by Shiga toxin-producing Escherichia coli O157:H7. Proc. Natl. Acad. Sci. USA 99, 7669–7674 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kensinger, R.D., Catalone, B.J., Krebs, F.C., Wigdahl, B. & Schengrund, C.L. Novel polysulfated galactose-derivatized dendrimers as binding antagonists of human immunodeficiency virus type 1 infection. Antimicrob. Agents Chemother. 48, 1614–1623 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gambaryan, A.S. et al. Polymer-bound 6' sialyl-N-acetyllactosamine protects mice infected by influenza virus. Antiviral Res. 68, 116–123 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Rele, S.M. et al. Dendrimer-like PEO glycopolymers exhibit anti-inflammatory properties. J. Am. Chem. Soc. 127, 10132–10133 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ali, M., Hicks, A.E., Hellewell, P.G., Thoma, G. & Norman, K.E. Polymers bearing sLex-mimetics are superior inhibitors of E-selectin-dependent leukocyte rolling in vivo. FASEB J. 18, 152–154 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Mowery, P. et al. Synthetic glycoprotein mimics inhibit L-selectin-mediated rolling and promote L-selectin shedding. Chem. Biol. 11, 725–732 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Lee, R.T., Lin, P. & Lee, Y.C. New synthetic cluster ligands for galactose/N-acetylgalactosamine-specific lectin of mammalian liver. Biochemistry 23, 4255–4261 (1984).

    Article  CAS  PubMed  Google Scholar 

  130. Kitov, P.I. et al. Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature 403, 669–672 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Kitov, P.I., Shimizu, H., Homans, S.W. & Bundle, D.R. Optimization of tether length in nonglycosidically linked bivalent ligands that target sites 2 and 1 of a Shiga-like toxin. J. Am. Chem. Soc. 125, 3284–3294 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Mulvey, G.L. et al. Assessment in mice of the therapeutic potential of tailored, multivalent Shiga toxin carbohydrate ligands. J. Infect. Dis. 187, 640–649 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Nelson, A. et al. A self-assembled multivalent pseudopolyrotaxane for binding galectin-1. J. Am. Chem. Soc. 126, 11914–11922 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Bovin, N.V., Tuzikov, A.B., Chinarev, A.A. & Gambaryan, A.S. Multimeric glycotherapeutics: new paradigm. Glycoconj. J. 21, 471–478 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Liu, J. et al. Protein heterodimerization through ligand-bridged multivalent pre-organization: enhancing ligand binding toward both protein targets. J. Am. Chem. Soc. 127, 2044–2045 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Solomon, D. et al. Heterobifunctional multivalent inhibitor-adaptor mediates specific aggregation between Shiga toxin and a pentraxin. Org. Lett. 7, 4369–4372 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Fukui, S., Feizi, T., Galustian, C., Lawson, A.M. & Chai, W. Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat. Biotechnol. 20, 1011–1017 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Tran-Crie for her assistance in manuscript preparation, and we acknowledge support from the US National Institutes of Health grants GM62116, GM060938 and AI050143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C Paulson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulson, J., Blixt, O. & Collins, B. Sweet spots in functional glycomics. Nat Chem Biol 2, 238–248 (2006). https://doi.org/10.1038/nchembio785

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio785

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing