Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors

Abstract

Programmed death (apoptosis) is turned on in damaged or unwanted cells to secure their clean and safe self-elimination. The initial apoptotic events are coordinated in mitochondria, whereby several proapoptotic factors, including cytochrome c, are released into the cytosol to trigger caspase cascades. The release mechanisms include interactions of B-cell/lymphoma 2 family proteins with a mitochondria-specific phospholipid, cardiolipin, to cause permeabilization of the outer mitochondrial membrane. Using oxidative lipidomics, we showed that cardiolipin is the only phospholipid in mitochondria that undergoes early oxidation during apoptosis. The oxidation is catalyzed by a cardiolipin-specific peroxidase activity of cardiolipin-bound cytochrome c. In a previously undescribed step in apoptosis, we showed that oxidized cardiolipin is required for the release of proapoptotic factors. These results provide insight into the role of reactive oxygen species in triggering the cell-death pathway and describe an early role for cytochrome c before caspase activation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lipidomics and oxidative lipidomics of apoptosis.
Figure 2: Characterization of peroxidase activity of CL–cyt c complexes in model systems.
Figure 3: MS analysis of CL oxidation in HL-60 cells.
Figure 4: Characterization of peroxidase activity of CL–cyt c complex in mitochondria.
Figure 5: Cyt c–catalyzed oxidation of CL is required for release of proapoptotic factors from mitochondria into the cytosol of cells during apoptosis.
Figure 6: Oxidized cardiolipin (TLCLox) effectively releases Smac/Diablo from mitochondria isolated from cyt c−/− mouse embryonic cells as well as cyt c and Smac/Diablo from mitochondria of cyt c+/+ cells.
Figure 7: Distribution of CL in mitochondrial membranes and effects of CL unsaturation on STS-triggered apoptosis in HL-60.

Similar content being viewed by others

References

  1. Green, D.R. & Kroemer, G. The pathophysiology of mitochondrial cell death. Science 305, 626–629 (2004).

    CAS  PubMed  Google Scholar 

  2. Kroemer, G. & Reed, J.C. Mitochondrial control of cell death. Targeting of tBid. Nat. Med. 6, 513–519 (2000).

    CAS  PubMed  Google Scholar 

  3. Lutter, M. et al. Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat. Cell Biol. 2, 754–761 (2000).

    CAS  PubMed  Google Scholar 

  4. Kuwana, T. et al. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111, 331–342 (2002).

    CAS  PubMed  Google Scholar 

  5. Iverson, S. & Orrenius, S. The cardiolipin-cytochrome c interaction and the mitochondrial regulation of apoptosis. Arch. Biochem. Biophys. 423, 37–46 (2004).

    CAS  PubMed  Google Scholar 

  6. Ott, M., Robertson, J., Gogvadze, V., Zhivotovsky, B. & Orrenius, S. Cytochrome c release from mitochondria proceeds by a two-step process. Proc. Natl. Acad. Sci. USA 99, 1259–1263 (2002).

    CAS  PubMed  Google Scholar 

  7. Nakagawa, Y. Initiation of apoptotic signal by the peroxidation of cardiolipin of mitochondria. Ann. NY Acad. Sci. 1011, 177–184 (2004).

    CAS  PubMed  Google Scholar 

  8. Kagan, V.E. Lipid Peroxidation in Biomembranes (CRC Press, Boca Raton, Florida, 1988).

    Google Scholar 

  9. Rouach, H., Clement, M., Ofranelli, M-T., Janvier, B. & Nordmann, R. Fatty acid composition of rat liver mitochondrial phospholipids during ethanol inhalation. Biochim. Biophys. Acta 795, 125–129 (1984).

    CAS  PubMed  Google Scholar 

  10. Giudetti, A.M., Siculella, L. & Gnoni, G.V. Citrate carrier activity and cardiolipin level in eel (Anguilla anguilla) liver mitochondria. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 133, 227–234 (2002).

    CAS  PubMed  Google Scholar 

  11. Igarashi, Y. & Kimura, T. Adrenic acid in rat adrenal mitochondrial phosphatidylethanolamine and its relation to ACTH-mediated stimulation of cholesterol side chain cleavage reaction. J. Biol. Chem. 261, 14118–14124 (1986).

    CAS  PubMed  Google Scholar 

  12. Schlame, M., Beyer, K., Hayer-Hartl, M. & Klingenberg, M. Molecular species of cardiolipin in relation to other mitochondrial phospholipids. Is there an acyl specificity of interaction between cardiolipin and the ADP/ATP carrier? Eur. J. Biochem. 199, 459–466 (1991).

    CAS  PubMed  Google Scholar 

  13. Jiang, J. et al. Cytochrome c release is required for phosphatidylserine peroxidation during Fas-triggered apoptosis in lung epithelial A549 cells. Lipids 39, 1133–1142 (2004).

    CAS  PubMed  Google Scholar 

  14. Li, K. et al. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101, 389–399 (2000).

    CAS  PubMed  Google Scholar 

  15. Birch-Machin, M.A. & Turnbull, D. Assaying mitochondrial respiratory complex activity in mitochondria isolated from human cells and tissues. Methods Cell Biol. 65, 97–117 (2001).

    CAS  PubMed  Google Scholar 

  16. Petit, J.M., Maftah, A., Ratinaud, M.H. & Julien, R. 10N-nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. Eur. J. Biochem. 209, 267–273 (1992).

    CAS  PubMed  Google Scholar 

  17. Dunford, H.B. Heme Peroxidases (John Wiley, New York, Chichester, 1999).

    Google Scholar 

  18. Marnett, L.J. Cyclooxygenase mechanisms. Curr. Opin. Chem. Biol. 4, 545–552 (2000).

    CAS  PubMed  Google Scholar 

  19. Tsai, A.L. et al. Heme coordination of prostaglandin H synthase. J. Biol. Chem. 268, 8554–8563 (1993).

    CAS  PubMed  Google Scholar 

  20. Ivancich, A., Jakopitsch, C., Auer, M., Un, S. & Obinger, C. Protein-based radicals in the catalase-peroxidase of synechocystis PCC6803: a multifrequency EPR investigation of wild-type and variants on the environment of the heme active site. J. Am. Chem. Soc. 125, 14093–14102 (2003).

    CAS  PubMed  Google Scholar 

  21. Svistunenko, D.A. Reaction of haem containing proteins and enzymes with hydroperoxides: the radical view. Biochim. Biophys. Acta 1707, 127–155 (2005).

    CAS  PubMed  Google Scholar 

  22. Svistunenko, D.A. & Cooper, C.E. A new method of identifying the site of tyrosyl radicals in proteins. Biophys. J. 87, 582–595 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Stellwagen, E. Carboxymethylation of horse heart ferricytochrome c and cyanferricytochrome c. Biochemistry 7, 2496–2501 (1968).

    CAS  PubMed  Google Scholar 

  24. Bernad, S. et al. Interaction of horse heart and thermus thermophilus type c cytochromes with phospholipid vesicles and hydrophobic surfaces. Biophys. J. 86, 3863–3872 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tuominen, E.K., Wallace, C.J. & Kinnunen, P.K. Phospholipid-cytochrome c interaction: evidence for the extended lipid anchorage. J. Biol. Chem. 277, 8822–8826 (2002).

    CAS  PubMed  Google Scholar 

  26. Nantes, I., Zucchi, M., Nascimento, O. & Faljoni-Alario, A. Effect of heme iron valence state on the conformation of cytochrome c and its association with membrane interfaces. A CD and EPR investigation. J. Biol. Chem. 276, 153–158 (2001).

    CAS  PubMed  Google Scholar 

  27. Zucchi, M.R., Naschimento, O.R., Faljoni-Alario, A., Prieto, T. & Nantes, I.L. Modulation of cytochrome c spin stated by lipid acyl chains: a continuous-wave electron paramagnetic resonance (CW-EPR) study of haem iron. Biochem. J. 370, 671–678 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Feix, J.B. & Kalyanaraman, B. Spin trapping of lipid-derived radicals in liposomes. Biochim. Biophys. Acta 992, 230–235 (1989).

    CAS  PubMed  Google Scholar 

  29. Malkowski, M.G., Ginell, S.L., Smith, W.L. & Garavito, R.M. The productive conformation of arachidonic acid bound to prostaglandin synthase. Science 289, 1933–1937 (2000).

    CAS  PubMed  Google Scholar 

  30. Shidoji, Y., Hayashi, K., Komura, S., Ohishi, N. & Yagi, K. Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation. Biochem. Biophys. Res. Commun. 264, 343–347 (1999).

    CAS  PubMed  Google Scholar 

  31. Svistunenko, D.A. An EPR study of the peroxyl radicals induced by hydrogen peroxide in the haem proteins. Biochim. Biophys. Acta 1546, 365–378 (2001).

    CAS  PubMed  Google Scholar 

  32. Cortese, J., Voglino, A.L. & Hackenbrock, C.R. Persistence of cytochrome c binding to membranes at physiological mitochondrial intermembrane space ionic strength. Biochim. Biophys. Acta 1228, 216–228 (1995).

    PubMed  Google Scholar 

  33. Scorrano, L. et al. A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell 2, 55–67 (2002).

    CAS  PubMed  Google Scholar 

  34. Petrosillo, G., Ruggiero, F.M., Pistolese, M. & Paradies, G. Ca2+-induced reactive oxygen species production promotes cytochrome c release from rat liver mitochondria via mitochondrial permeability transition (MPT)-dependent and MPT-independent mechanisms: role of cardiolipin. J. Biol. Chem. 279, 53103–53108 (2004).

    CAS  PubMed  Google Scholar 

  35. Crouser, E.D. et al. Quantitation of cytochrome c release from rat liver mitochondria. Anal. Biochem. 317, 67–75 (2003).

    CAS  PubMed  Google Scholar 

  36. Ritov, V., Menshikova, E. & Kelley, D. High-performance liquid chromatography-based methods of enzymatic analysis: electron transport chain activity in mitochondria from human skeletal muscle. Anal. Biochem. 333, 27–38 (2004).

    CAS  PubMed  Google Scholar 

  37. Robinson, N.C., Zborowski, J. & Talbert, L.H. Cardiolipin-depleted bovine heart cytochrome c oxidase: binding stoichiometry and affinity for cardiolipin derivatives. Biochemistry 29, 8962–8969 (1990).

    CAS  PubMed  Google Scholar 

  38. Daum, G. Lipids of mitochondria. Biochim. Biophys. Acta 822, 1–42 (1985).

    CAS  PubMed  Google Scholar 

  39. Garcia Fernandez, M. et al. Early changes in intramitochondrial cardiolipin distribution during apoptosis. Cell Growth Differ. 13, 449–455 (2002).

    PubMed  Google Scholar 

  40. Cossarizza, A. et al. Mitochondrial functionality and mitochondrial DNA content in lymphocytes of vertically infected human immunodeficiency virus-positive children with highly active antiretroviral therapy-related lipodystrophy. J. Infect. Dis. 185, 299–305 (2002).

    CAS  PubMed  Google Scholar 

  41. Pfeiffer, K. et al. Cardiolipin stabilizes respiratory chain supercomlexes. J. Biol. Chem. 278, 52873–52880 (2003).

    CAS  PubMed  Google Scholar 

  42. Liu, J., Weiss, A., Durrant, D., Chi, N.W. & Lee, R.M. The cardiolipin-binding domain of Bid affects mitochondrial respiration and enhances cytochrome c release. Apoptosis 9, 533–541 (2004).

    CAS  PubMed  Google Scholar 

  43. Walensky, L. et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cristea, I.M. & Degli Esposti, M. Membrane lipids and cell death: an overview. Chem. Phys. Lipids 129, 133–160 (2004).

    CAS  PubMed  Google Scholar 

  45. Epand, R.F., Martinou, J.C., Fornallaz-Mulhauser, M., Hughes, D.W. & Epand, R.M. The apoptotic protein tBid promotes leakage by altering membrane curvature. J. Biol. Chem. 277, 32632–32639 (2002).

    CAS  PubMed  Google Scholar 

  46. Gonzalvez, F. et al. tBid interaction with cardiolipin primarily orchestrates mitochondrial dysfunctions and subsequently activates Bax and Bak. Cell Death Differ. 12, 614–626 (2005).

    CAS  PubMed  Google Scholar 

  47. Shidoji, Y., Komura, S., Ohishi, N. & Yagi, K. Interaction between cytochrome c and oxidized mitochondrial lipids. Subcell. Biochem. 36, 19–37 (2002).

    CAS  PubMed  Google Scholar 

  48. Baines, C.P. et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434, 658–662.

    CAS  PubMed  Google Scholar 

  49. Nakagawa, T. et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434, 652–657 (2005).

    CAS  PubMed  Google Scholar 

  50. Raha, S. & Robinson, B.H. Mitochondria, oxygen free radicals, and apoptosis. Am. J. Med. Genet. 106, 62–70 (2001).

    CAS  PubMed  Google Scholar 

  51. Siemankowski, L.M., Morreale, J. & Briehl, M.M. Antioxidant defenses in the TNF-treated MCF-7 cells: selective increase in MnSOD. Free Radic. Biol. Med. 26, 919–924 (1999).

    CAS  PubMed  Google Scholar 

  52. Matsura, T. et al. Endogenously generated hydrogen peroxide is required for execution of melphalan-induced apoptosis as well as oxidation and externalization of phosphatidylserine. Chem. Res. Toxicol. 17, 685–696 (2004).

    CAS  PubMed  Google Scholar 

  53. Chen, Y.R. et al. Formation of protein tyrosine ortho-semiquinone radical and nitrotyrosine from cytochrome c-derived tyrosyl radical. J. Biol. Chem. 279, 18054–18062 (2004).

    CAS  PubMed  Google Scholar 

  54. Barr, D.P., Gunther, M.R., Deterding, L.J., Tomer, K.B. & Mason, R.P. ESR spin-trapping of a protein-derived tyrosyl radical from the reaction of cytochrome c with hydrogen peroxide. J. Biol. Chem. 271, 15498–15503 (1996).

    CAS  PubMed  Google Scholar 

  55. Tyurina, Y.Y. et al. The plasma membrane is the site of selective phosphatidylserine oxidation during apoptosis: role of cytochrome C. Antioxid. Redox Signal. 6, 209–225 (2004).

    CAS  PubMed  Google Scholar 

  56. Nilsson, O.S. & Dallner, G. Transverse asymmetry of phospholipids in subcellular membranes of rat liver. Biochim. Biophys. Acta 464, 453–458 (1977).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (grants 1RO1 HL70755 and PO1 HL070807), the US National Insitute for Occupational Safety and Health (grant 1RO1 OH008282) and the International Human Frontier Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerian E Kagan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Effects of a phenolic lipid antioxidant, EPE, on phospholipid peroxidation in lipsomes and HL-60 cells. (PDF 23 kb)

Supplementary Fig. 2

Assessments of competitive binding of CL with cyt c. (PDF 14 kb)

Supplementary Fig. 3

Characterization of peroxidase activity of CL/cyt c complexes in model systems. (PDF 47 kb)

Supplementary Fig. 4

MS analysis of CL oxidation in model systems and mitochondria. (PDF 46 kb)

Supplementary Fig. 5

Characterization of peroxidase activity of CL/cyt c complex in mitochondria. (PDF 39 kb)

Supplementary Fig. 6

Western blots of cyt c, Smac/Diablo (a) and Bax (b) in cyt c+/+ and cyt c−/− cells. (PDF 31 kb)

Supplementary Fig. 7

Assessments of competitive interactions between CL/cyt c and tBid. (PDF 23 kb)

Supplementary Methods (PDF 149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagan, V., Tyurin, V., Jiang, J. et al. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 1, 223–232 (2005). https://doi.org/10.1038/nchembio727

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio727

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing