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High-content screening is transforming drug discovery by enabling simultaneous measurement of multiple features of cellular
phenotype that are relevant to therapeutic and toxic activities of compounds. High-content screening studies typically generate
immense datasets of image-based phenotypic information, and how best to mine relevant phenotypic data is an unsolved
challenge. Here, we introduce factor analysis as a data-driven tool for defining cell phenotypes and profiling compound activities.
This method allows a large data reduction while retaining relevant information, and the data-derived factors used to quantify
phenotype have discernable biological meaning. We used factor analysis of cells stained with fluorescent markers of cell cycle
state to profile a compound library and cluster the hits into seven phenotypic categories. We then compared phenotypic profiles,
chemical similarity and predicted protein binding activities of active compounds. By integrating these different descriptors of
measured and potential biological activity, we can effectively draw mechanism-of-action inferences.

Drug discovery requires integration of chemical and biological knowl-
edge about many compounds in an efficient manner1. Profiling
compounds by chemical structure has become increasingly sophisti-
cated, but profiling by biological activity has lagged owing to the
difficulty of collecting and integrating different types of biological
information, and also because of the large expense of data-rich
methods such as mRNA expression profiling. High-content screening
(HCS) combines automated microscopy with image analysis to enable
phenotypic profiling of compounds based on activities on cells
visualized by fluorescence cytology2–4. This rapidly developing
technology is increasingly used to facilitate both target and lead
characterization5,6. The instrumentation and image quantification
aspects of HCS, while under constant improvement, are already well
advanced7–9. Methods for downstream data processing and mining of
biological data are by comparison significantly less refined. Most users
score for predefined phenotypes of interest, such as nuclear transloca-
tion of a transcription factor, largely ignoring the wealth of phenotypic
information present in most HCS datasets. Thus, the huge potential of
HCS to inform on biological effects relevant to therapeutics and
toxicity is largely untapped.

Two problems have limited the use of HCS to report broadly on
phenotypic effects of compounds: the large size of the datasets, and the
fact that the biological meaning of most of the measurements is
unclear. A typical HCS experiment might generate terabytes of image
data from which gigabytes of numbers are extracted describing the
amount and location of biomolecules on a cell-to-cell basis. Most of

these numbers have no obvious biological meaning; for example,
though the amount of DNA per nucleus has obvious significance, the
importance of other nuclear measures, such as DNA texture or nuclear
ellipticity, is much less clear. This leads biologists to ignore the non-
obvious measurements, even though they may report usefully on
compound activities. Here, we introduce factor analysis to mine HCS
datasets. This method was developed more than a century ago10,
remains standard in other fields for analyzing large, multidimensional
datasets11–15, and was implemented here using standard, commercially
available statistics software. It allows a large data reduction and
quantifies phenotype using data-derived factors that are biologically
interpretable in many cases.

The basic supposition underlying factor analysis is that groups of
variables within a multivariate dataset that are highly correlated with
each other, but poorly correlated with other variables in the dataset,
are likely to be measuring a common underlying trait, or ‘‘factor’’16. In
HCS, this translates to the reasonable supposition that groups of
image-based cell features that show highly correlated changes between
individual cells following different compound treatments are likely
reporting on a common phenotypic property. If this supposition is
true, we should often be able to interpret the biological meaning of the
factors, even though they were generated directly from the data
without biological assumptions. Here, we use cytological markers of
cell cycle, HCS and factor analysis to profile the biological effects of a
compound library. We find that six factors are sufficient to describe
the biological responses, that several of them have interpretable
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biological meaning and that the responses group the active com-
pounds into seven major categories by phenotypic effects. We then
explore how phenotypic profiles of active compounds compare with
chemical structure and predicted target profiles. The resulting struc-
ture-activity relationships are more information rich than would be
possible with a single data type, and they allow us to infer mechanisms
of action for some compounds.

RESULTS
Factor analysis of high-content image data
We designed an HCS assay to identify compounds that affect cell
proliferation, and to profile their cell cycle phenotype, using fluor-
escent probes for DNA (Ch1), mitosis (Ch2) and DNA replication
(Ch3) (Fig. 1). Probes for Ch1 (Hoechst 33342 dye) and Ch2 (anti-
phosphoH3) were standard. To label sites of DNA replication in Ch3
we pulsed cells briefly with 5-ethynl-2-deoxyuridine (EdU) before
fixation. Classic bromodeoxyuridine (BrdU) staining is not ideal for
HCS because many steps are required to visualize the probe, including
a DNA denaturation step that perturbs nuclear morphology. EdU is
incorporated into DNA during replication like BrdU, but visualization
requires only a single reaction using ‘‘click chemistry’’ to conjugate a
rhodamine-azide dye to the ethynyl group (Supplementary Methods
online). Images were acquired automatically using 10� objective and
widefield imaging. For primary image analysis, the DNA stain was
segmented to find nuclei. A nuclear mask was then used to generate 36
cytological features (all nuclear) from the three fluorescent channels
(Supplementary Table 1 online). At least 500 cells were scored per
treatment in two replicate experiments. We used the common factor
model to map these 36 cytological features into a reduced dimensional
space defined by a set of six orthogonal factors that reflect the major
underlying phenotypic attributes measured in the assay (Fig. 2a,b,
Supplementary Methods and Supplementary Data 1 online). The set
of features that load substantially on a given factor was used to infer
the underlying phenotypic attributes associated with that factor.
A representative polar plot of loadings versus cytological features for
factor 1 was shown (Fig. 2c). Complete factor structure and under-
lying phenotypic traits are outlined in Figure 2d, and representative
images are shown in Supplementary Figure 1 online. Note the order
of numbering the factors is based on the extent to which a given factor
accounts for the common variance in the whole dataset.

Factor 1, which accounts for most of the common variance, loads
highly on 12 features, all of which describe the size of the nucleus.
Examples of these features include Area-Ch1, TotalIntensity-Ch1,

Length-Ch1 and Width-Ch1. Based on this loading pattern we
conclude that this is a nuclear size factor. Thus, the most informa-
tion-rich phenotypic characteristic given our labeling and imaging
strategy is the size of the nucleus and the quantity of DNA. Factor 2
loads primarily with four features that describe the extent of EdU
probe incorporation. Hence, factor 2 is a DNA replication, or S-phase
factor. Factor 3 loads primarily with features that describe DNA
concentration (and thus condensation; for example, AvgIntensity-
Ch1) and phosphoH3 intensity (for example, AvgIntensity-Ch2) and
is thus a mitosis and chromosome condensation factor. Factor 4 is
loaded substantially by four features that refer to the shape contour of
the nuclear perimeter and is thus a nuclear morphology factor. Factor
5 loads with four features that describe Ch2 texture; that is, the
morphology of EdU incorporation. It is statistically distinct from
factor 2 and must report on some particular aspect of DNA replica-
tion, such as early versus late S phase. Factor 6 reports mainly on
nuclear shape. Taken together, we reduced a dataset of 36 measured
cytological features from B106 cells (B7 GB) to six common under-
lying factors scored for B104 wells (B3 MB). Moreover, these
common underlying factors reflect a set of orthogonal phenotypic
attributes that account for almost all of the covariance relationships
shown in the image-based cytological features measured on each cell
in our assay.

Factor-based phenotypic compound profiling
We used our high-content image assay to screen and profile a library
of 6,547 compounds derived from a diversity library (21%), a natural
products library (58%) and a library of known bioactive compounds
(21%); all compounds were assayed in duplicate at a single dose of
10 mM for 20 h (Fig. 3a). Dose-response studies using a panel of
known cytotoxic compounds with diverse mechanisms of action
indicated the appropriateness of these dose and time conditions for
phenotypic profiling (Supplementary Fig. 2 online). Based on the six-
factor model, we used regression to estimate scores for each factor
(that is, nuclear size, replication, mitosis, nuclear morphology, EdU
texture and nuclear ellipticity) on a cell-by-cell basis for each treat-
ment. We summarized each compound treatment effect as the mean
score on each of the six factors (that is, a well average).

We expected our compound library to contain multiple bioactive
compounds with various distinct targets and mechanisms of action,
and consequently we expected it to generate unique phenotypic
readouts on the six orthogonal factors. To score the strength of
phenotypic perturbation independent of precise phenotype, we

Figure 1 High-content screen. HeLa cells were

grown in 384-well optical plates for 24 h before

compound treatment. Compounds were delivered

in an automated manner for a final concentration

of 10 mM and incubated for approximately 20 h.

Cells were then pulsed for 40 min with 500 nM

EdU to label sites of nascent DNA replication

(yellow), followed by fixation in formaldehyde.

Rhodamine-azide was conjugated to EdU by click

chemistry. Cells were immunolabeled with rabbit

anti-phosphohistone H3 Ser10 (pH3) and a Cy5-

conjugated goat anti-rabbit secondary antibody

(red). DNA was labeled with Hoechst dye (blue).

Automated fluorescence microscopy was carried

out using a Cellomics Arrayscan, and images
were collected with a 10� PlanFluor objective. Representative images are shown with 20 mm size bars. Individual cell segmentation based on the DNA stain

(cytological mask) and quantification was performed using the Cellomics Morphology Explorer algorithm, and 36 cytological features (Supplementary Table 1)

were determined for each cell on DNA (Ch1), pH3 (Ch2) and EdU (Ch3) channels. Features were collected for at least 500 cells per well (treatment).
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computed the Euclidean distance between each compound and the
average control (untreated) phenotype for a composite vector con-
sisting of all factor scores for that compound. This Euclidean distance
metric projects the multidimensional phenotype onto a single phe-
notypic response dimension and allows us to call ‘‘hits’’ independent
of their exact phenotype.

We defined hits as compounds whose phenotypic response (that is,
distance) was in the top 5% in both replicate experiments; this
resulted in 211 compound hits, which is B3% of the total screening
set. Our hit set was enriched in compounds derived from the library of

bioactive compounds (Fig. 3b). This enrichment was most pro-
nounced when we examined the strongest bioactive compounds in
the top 1% distance group. In this set, 48% of the compounds were
derived from the bioactive library, compared with 21% in the
entire screening set. This indicates our strategy is effective at identi-
fying compounds with substantial biological activity. We observed a
generally good correspondence between the two replicate experi-
ments (Fig. 3c).

We next profiled the biological activity of the hit compounds using
unsupervised hierarchical clustering of the factor scores. This revealed
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Figure 2 Common factor model defines a multidimensional biological activity space. (a) High-content data are contained in an n � m matrix, X consisting

of a set of n image-based cytological features measured on m cells. The common factor model maps the n cytological features to a reduced k-dimensional

space described by a set of factors F that reflect the major underlying phenotypic attributes measured in the assay. The loading matrix L defines the

relationship between the measurements in X to the underlying common factors. The diagonal matrix e is a matrix of specific variances. (b) The dimensionality

of the factor space is determined by an eigenanalysis of the correlation matrix of the data matrix X. The dimension k is determined by Kaiser criterion to

be equal to the number of factors with variance greater than unity. Using this criterion we determined that there are six significant factors. (c) The loadings

L reflect the correlations between cytological features and the common underlying factors. We used polar plots to visualize these loading patterns and

interpret the biological meaning of the underlying factor. Shown here is the loading pattern for factor 1 as an example. (d) The complete factor structure is

shown in this schematic. Each of the six factors are drawn with lines connected to the cytological features with which they are most significantly correlated.

Our interpretation of the phenotypic attributes characterized by each factor is shown on the right (see also Supplementary Methods and Supplementary

Data 1).
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seven primary clusters that we termed ‘‘phenotypes’’ (Fig. 3d, Sup-
plementary Data 2 and Supplementary Fig. 3 online). We can begin
to interpret these phenotypes by looking at how the factors change,
and also where compounds with known biological activity are posi-
tioned (discussed below). For example, phenotypes 1 and 2, which
show high chromosome condensation, correspond in large part to
mitotic arrest; phenotype 4, which shows generally high chromosome
condensation but also decreased nuclear size, corresponds in large part
to apoptosis; phenotype 5, which shows increased DNA replication,
and phenotypes 6 and 7, which show increased nuclear area, decreased
DNA replication and decreased chromosome condensation, probably
correspond to cell cycle exit in G1, which is generally understood to
increase nuclear cross-sectional area. The strongest hits in our screen
(top 1%) mostly affect mitotic progression and cell survival, whereas
weaker hits (top 2–5%) seem to block cell cycle progression via a G1
arrest. This difference in phenotypic strength presumably reflects the
more substantial cytological changes associated with mitosis and
death, rather than differences in compound potency.

Comparison to metrics of chemical similarity
Compounds with similar structure have similar function17, and
quantitative structure-activity relationships (SARs) are at the heart
of drug discovery. As a step toward phenotype-based SARs, we
investigated whether our phenotypic clustering groups together struc-
turally similar compounds. For each compound we defined a circular
molecular fingerprint using ECFP_4 descriptors that define molecular
structure using radial atom neighborhoods (see Methods). We com-
puted a similarity matrix based on Tanimoto similarities that describes
the relationship between each of the 211 compounds in our hit set.
Analogously, we generated a cosine distance-based phenotypic simi-
larity matrix using our factor-based phenotypic profiles. These

matrices, displayed as heat maps, are shown side by side (Fig. 4a). The
compounds are ordered by phenotypic similarity using unsupervised
clustering, so the seven primary phenotypes appear as blue boxes on
the diagonal in the biological space panel.

In the chemical space side, we observed multiple blocks of structu-
rally similar compounds that correspond to phenotypes 1, 2, 6 and 7.
The blocks of chemical similarity were smaller than the phenotype
blocks, because only a subset of compounds causing a given pheno-
type are similar, and in some cases, multiple blocks of chemical
similarity were observed for a given phenotype, especially phenotype
6. These clusters evidently reflect regions in which biological effects are
dominated by distinct structural compounds classes. The relationship
between phenotype space and chemical space we observed (Fig. 4a) is
perhaps expected, but to our knowledge it has not been visualized
before in such quantitative detail.

To quantify the extent to which phenotypic clustering of the active
compounds groups structurally related compounds, and to determine
whether this structure-function concurrence is beyond what would be
expected by random chance, we determined the Spearman correlation
coefficient for rank-ordered phenotypic similarities and the corre-
sponding compound similarities using the matrices from Figure 4a.
We found an overall modest positive correlation (correlation ¼
0.0746), which presumably reflects strong correlation within small
clusters, and lack of correlation elsewhere. We then generated 1,000
random compound similarity matrices by randomized sorting, com-
puted the Spearman correlation coefficient with the phenotypic
ordering, and used this to evaluate whether the observed correlation
was statistically significant (Supplementary Fig. 4 online). This
analysis indicates that the observed correlation is significant (P o
0.001) and approximately two-fold above that maximum chance
observation. Thus, whereas this analysis comprises both structurally
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similar and structurally dissimilar compounds, the significance of the
association between compound structure and function suggests that
the molecular similarity principle17,18 holds for our phenotypic
compound profiling.

In light of emerging evidence that the molecular similarity principle
might not always hold true19, we sought to understand the extent to
which small changes in structure are associated with large changes in
function; for example, activity cliffs. To address this concept we
compared Tanimoto similarities with phenotypic distance between
each compound pair in our screening set. Because of the large number
of comparisons we focused our analysis on only those comparisons in
which at least one compound in a pair was active, and we examined
phenotypic distance for those compound pairs that showed a Tani-
moto structural similarity score Z 0.3; this threshold was selected
based on the distribution of similarity scores in our dataset and is
consistent with similarity scores observed between compounds show-
ing activity against the same target20. Our analysis reveals that
approximately 96% of the examined compounds with similar struc-
ture show substantially similar phenotypic readouts (Fig. 4b). Alter-
natively, of the structurally similar compounds active in our assays,
4% show significant phenotypic divergence (Fig. 4b). To understand
this divergence further we examined a pair of scoulerine-related
compounds more closely (Fig. 4b and Supplementary Fig. 5 online).
These two compounds have high molecular similarity (top 0.1% based
on similarity) and differ essentially by the presence of methoxy or
hydroxyl groups (Supplementary Fig. 5). The compound pair has

significantly different phenotypes (top 1% based on phenotypic
distance), and this functional divergence is consistent with recent
structure-activity studies on the two compounds21,22. Taken together
we conclude that activity cliffs do emerge in our phenotypic
screen. But, they represent the minority of cases. We are therefore
more likely to observe phenotype concordance for structurally
similar compounds.

Examples of phenotypic SARs
We chose several local SARs to examine in more detail (indicated by
black bars adjacent to the compound structure similarity matrix in
Fig. 4a). A subcluster that falls within phenotype 4 is shown in
Figure 5a. This subcluster is characterized by decreased nuclear size,
replication and EdU texture scores and increased nuclear morphology
score. Unlike most of the compounds in cluster 4, this subcluster does
not show a substantial increase in chromosome condensation. Thus,
these compounds, though apparently cytotoxic, generate a phenotypic
cytotoxicity signature that is distinct from that of classic apoptosis.
This subcluster is enriched in antibiotic compounds that have known
cytotoxic effects in mammalian cells. A small structural cluster
contained three cyclic hexadepsipeptides, including aurantimycin (1)
and diperamycin (2), which are derived from strains of Strepto-
myces23,24. These showed strong phenotypic similarity to a structurally
divergent lysolipin derivative. The second region of local structural
convergence within this phenotypic cluster contains several cyclic
nonpeptide compounds. This includes kendomycin (3), an antibiotic
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Figure 5 Factor-based phenotypic profiling elucidates SARs in biological activity space. Relationships between clusters containing similar phenotypic profiles
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factor score of +1.5. The corresponding submatrices from the compound structure similarity matrix are also shown with the identical color map (Fig. 4).

Yellow indicates high similarity, and black indicates low similarity. Structures are shown for several member compounds, and the position within the clusters

is indicated by number. (a) Subcluster of compounds that result in a cell death phenotype characterized by low factor 1 (nuclear size) and increased factor 3

(chromosome condensation). The subcluster contains two cyclic depsipeptides with known cytotoxicity, 1 and 2, and cytotoxic antibiotics 3 and 4.
(b) Subcluster of compounds resulting in G1 arrest characterized by large nuclear size (factor 1) and low DNA replication and mitosis (factors 2 and 3). This

subcluster consists mainly of corticosteroids; for example, 5, 6 and 7. (c) A larger subcluster phenotypically dominated by low DNA replication, mitosis and

EdU texture and average to high nuclear size. The top portion contains cardiac glycosides known to affect Na/K pumps, including 9, 10 and 11. The

subcluster also contains protein translation inhibitors, 12 and 13. The lower portion contains steroid hormones, including 14 and 15.
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with a C-glycosidic core and previously reported mammalian cyto-
toxicity and endothelin receptor antagonistic activity25, as well as
other cyclic compounds that include two antibiotics of the concana-
mycin class that have cytotoxic activity and that are potent inhibitors
of vacuolar ATPases26. We also note that this phenotypic subcluster
contains a region with structurally distinct cytotoxic and antibiotic
compounds, including heptelidic acid chlorohydrin (4)27. The phe-
notypic similarity of all these compounds presumably reflects a

common target at the level of protein or
pathway that may be vacuolar ATPases or
other proteins that function in related areas
of vesicular trafficking26.

A subcluster within phenotype 6 with high
structural convergence is shown in Figure 5b.
This subcluster is characterized by increased
nuclear area and ellipticity, but decreased
DNA replication, chromosome condensation,
nuclear morphology and EdU texture. It con-
tains 11 corticosteroid compounds with sub-
stantial structural similarity, including
clobetasol-17-propionate (5), dexamethasone
(6) and triamcinolone (7), and only one
structurally dissimilar compound—entobex
(8). Corticosteroids are known to cause a
cell cycle arrest during G1 (ref. 28), which
validates our interpretation of the parent
cluster 6 as a G1 arrest phenotype. However,
the local grouping of highly structurally simi-
lar compounds within this subcluster indi-
cates a corticosteroid-specific G1 arrest
phenotype. Such discrimination is surprising
given our choice of cell types and fluorescent
probes, and it indicates the power of relatively

subtle morphology descriptors, such as nuclear shape metrics, to
report on biological activity.

A larger phenotypic subcluster within phenotype 7, which has
various effects on nuclear size, and a persistent decrease in DNA
replication and EdU texture, was identified as consistent with a cell
cycle arrest (Fig. 5c). Within this subcluster we found two groups of
structurally similar compounds separated by a region of structurally
distinct compounds. The two groups display a substantial degree of
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Figure 6 Factor-based phenotypic profiling

provides biological support to structure-based

target predictions. (a) A mitotic subcluster.

Factor-based phenotypic profiles and subcluster

dendrograms from Figure 3d are shown (–1.5 ¼
blue, +1.5 ¼ red). The corresponding compound

structure similarity submatrix is also shown with

the identical color map from Figure 4 (black, low

similarity; yellow, high similarity). Structures are

shown for several member compounds, and the

position within the clusters is indicated by

number. We predicted targets for each compound

as described in the Methods. Blue boxes identify

related predicted target with corresponding

compound. Only genes encoding proteins that are
targeted by two or more compounds within the

cluster are shown. (b) The structures of three

representative compounds are shown—

16, 17 and 18. Also shown are images of cells

treated with compound for 20 h and stained for

DNA by Hoescht dye and the predicted target

a-tubulin. Cell cycle profiles determined from

HCS images using a decision tree–based classi-

fication scheme described elsewhere (C. Tao,

Novartis Institutes for BioMedical Research,

personal communication) are shown for each

compound. Images and profiles of control cells

with normal phenotype are shown. 20-mm size

bars are shown in the control micrographs and

correspond to all micrographs.
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intergroup similarity, presumably because they share a steroid, or
steroid-like, structure. The first group contains three cardiac glyco-
sides: digitoxigenin (9), ouabain octahydrate (10) and digoxin (11).
These are well-known inhibitors of Na/K pumps and have been shown
to inhibit topoisomerase I in mammalian cells at nanomolar concen-
trations29. At high doses, cardiac glycosides cause a large drop in
intracellular potassium levels, which leads to an inhibition of protein
synthesis30,31. The protein translation inhibitor emetine (12)32 is also
present within this cardiac glycoside subcluster, which suggests that
the protein translation inhibition mechanism of action of these
compounds may dominate their phenotypic effect in our assay.
Supporting this interpretation, the non-structurally related translation
inhibitor cycloheximide (13) shares this phenotype. The second group
of related compounds contains a set of steroid hormones including
progesterone (14) and danatrol (15). Progesterone signaling is known
to result in growth arrest in G0/G1 (refs. 33,34).

Integration with ligand-target knowledge space
Our observation that multiple distinct structural classes of compounds
can produce similar phenotypes, even at our highest phenotypic
resolution, could be explained by compounds perturbing common
targets via the same or different binding sites, or by compounds
perturbing different components of common pathways. We investi-
gated this possibility by implementing a structure-based target pre-
diction method that has recently been reported35. Statistical models of
substructural features were combined with an annotated chemo-
genomics database (WOMBAT) that associates ligand molecular
structures with their cognate biological targets. We used these
‘‘known’’ ligand-target associations to train a naive Bayes model that
we then used to predict the targets of our 211 active compounds.
Using the top five most probable targets for each compound, we
examined the extent to which phenotypic clustering of all the active
compounds groups their cognate predicted targets. Notably, we found
an increased positive correlation (correlation ¼ 0.136, P o 0.001,
Supplementary Fig. 6 online) between phenotypes and targets. This is
twice the strength in correlation compared with the phenotype-to-
structure comparison, which indicates that the observed divergence in
SARs can in part be accounted for by structurally different compounds
having common targets.

Although our results above point to the effectiveness of the target
prediction method, predicting ligand-target association is an imperfect
art. Thus, comparisons with the more robust phenotype and chemical
similarity measures must be treated with caution. To provide a sense
of its potential utility in pointing to a particular target, we illustrate
results from a subcluster from mitotic arrest phenotype 1, which is
primarily characterized by high chromosome condensation. Within
this cluster we observed four distinct groups of structurally related
compounds. The first, second, third and fourth groups are character-
ized by a colchicine derivative, a set of novel kinase inhibitors,
a quinoline derivative and a pseudolarix acid B derivative. Our
substructure-based method predicted multiple targets for each com-
pound. We focused only on the top five targets, and for visualization
purposes plotted only those targets that are predicted at least twice
within the phenotypic subcluster (Fig. 6a). We find that a majority of
all the compounds are predicted to target tubulin (7 out of 13), and as
a consequence should affect mitotic spindle integrity. Additionally, the
distinct group of novel kinase inhibitor compounds is predicted to hit
both cyclin-dependent kinase 1 (CDK1) and CDK2. Colchicine is a
well-known inhibitor of microtubule dynamics; it binds a distinct
pocket within tubulin and causes depolymerization36. The colchicine
derivative we found should have similar effects in cells. Several

quinoline derivatives, including the one we found37, have been
shown to also depolymerize microtubules via tubulin interactions38,
and pseudolarix B has been recently shown to affect tubulin
polymerization through a binding site distinct from the colchi-
cine pocket39.

To gain mechanistic insight, we examined cytoskeletal morphology
and cell cycle profiles for the set of putative tubulin-targeting
compounds. We used immunofluorescence microscopy to detect
a-tubulin in cells treated with each compound at the screening
dose. As predicted, we observed depolymerization of microtubules
and mitotic arrest in cells treated with each of the colchicine (16),
quinoline (17) and pseudolarix acid B (18) derivatives (Fig. 6b). Thus,
integration of compound structure with knowledge-based ligand-
target predictions reveals that similar phenotypes produced by differ-
ent compounds can in part be accounted for by targeting different
components of common pathways, and by compounds hitting com-
mon targets via different binding sites. Moreover, our results indicate
that phenotype and predicted targets constitute a useful SAR pair that
can overcome the limitations of chemical similarities.

DISCUSSION
The central goal of our study was to investigate SARs by integrating
phenotypic information from HCS with chemical knowledge from
profiles of chemical similarity and predicted targets. Such integration
would be a powerful tool in drug discovery. This is not a novel
concept, but it has been difficult to achieve at a practical level, in
part because we lack conceptual frameworks for integrating high-
dimensional biological and chemical data, and in part because high-
dimensional datasets of biological activity (for example, microarray
data) are typically too expensive to acquire across a large number of
compounds. Our results represent considerable progress on the
integrated structure-activity problem, using easy-to-adopt methods.
The two chemical knowledge profiles we use, structural similarity
(Figs. 4 and 5) and target predictions (Fig. 6), differ considerably in
their rigor and degree of development, the former being a well-
established science and the latter more of a ongoing challenge for
computational chemists than a practical reality. Thus, our goals in
comparing them to phenotypic profiles were rather different in the
two cases. In the case of structural similarity, we knew that clusters of
compounds that were related by phenotype and chemistry should
exist in our library, and we used the comparison with phenotypes to
find them and to examine them in detail to uncover new mechanistic
information (Fig. 5). In the case of target prediction, we used the
phenotype data to test how well the prediction algorithm was working,
and also to point to one particular target (Fig. 6). Our analysis
revealed that phenotypes correlate better with predicted compound
targets than with the compound structures themselves (Supplemen-
tary Fig. 6). This result provided support for the effectiveness of the
target prediction model and for the idea that different ligand-target
interactions account, in part, for divergence in compound SARs.

Concordance between phenotypic and structural similarity profiles
revealed the capability of HCS combined with factor analysis to make
subtle phenotypic distinctions. For example, we readily discriminated
the effects of corticosteroid-like and progesterone-like steroids, even
though both cause cells to stop proliferating in G0/G1 (Fig. 5b,c). The
subclustering of cytotoxic compounds (Fig. 5a) illustrates even finer
phenotypic resolution. Obtaining this degree of distinction of
therapeutically relevant mechanisms using a generic cancer cell line
and cell cycle probes is notable, and it attests to the large amount of
information that can be derived from microscope images when
appropriate mining methods are implemented. Use of primary cells

ART ICL ES

66 VOLUME 4 NUMBER 1 JANUARY 2008 NATURE CHEMICAL BIOLOGY

http://www.nature.com/nchembio/journal/v4/n1/compound/nchembio.2007.53_COMP9.html
http://www.nature.com/nchembio/journal/v4/n1/compound/nchembio.2007.53_COMP10.html
http://www.nature.com/nchembio/journal/v4/n1/compound/nchembio.2007.53_COMP11.html
http://www.nature.com/nchembio/journal/v4/n1/compound/nchembio.2007.53_COMP12.html
http://www.nature.com/nchembio/journal/v4/n1/compound/nchembio.2007.53_COMP13.html
http://www.nature.com/nchembio/journal/v4/n1/compound/nchembio.2007.53_COMP14.html
http://www.nature.com/nchembio/journal/v4/n1/compound/nchembio.2007.53_COMP15.html
http://www.nature.com/nchembio/journal/v4/n1/compound/nchembio.2007.53_COMP16.html
http://www.nature.com/nchembio/journal/v4/n1/compound/nchembio.2007.53_COMP17.html
http://www.nature.com/nchembio/journal/v4/n1/compound/nchembio.2007.53_COMP18.html


and more disease-relevant probes should further increase the resolu-
tion in areas relevant to drug discovery.

Lack of concordance between phenotypic and chemical similarity
profiles is illustrated in the cytotoxicity cluster 4. One can envision cell
death as a phenotypic end-point for multiple stress pathways that can
be invoked by a variety of pharmacologic perturbations. In this regard
we observe multiple distinct compound classes appearing within the
cytotoxicity cluster, and consequently minimal correlation between
structure and phenotype when examined with a low phenotypic
resolution—that is, the cluster as whole. However, when examined
at higher phenotypic resolution we can discriminate multiple small
groups of structurally related compounds, within which we observed
highly similar cytotoxicity signatures, for example the cyclic hexi-
depsipeptides versus the cyclic nonpeptide antibiotic compounds
(Fig. 5a). This indicates that even at the end-point phenotype of
cell death observed at a saturating dose we can still generate mean-
ingful structure-function relationships.

Computational ligand-target prediction enabled us to demonstrate
that by mapping compound structures to targets we improve our
ability to discover meaningful SARs based on cytological phenotype
(Supplementary Fig. 3). Furthermore, our data provide quantitative
support for what is perhaps a logical explanation for divergence in
structure versus phenotype concordance. To test the effectiveness of
the target prediction method at higher phenotypic resolution, we
looked closely at the predicted targets for four groups of phenotypi-
cally similar yet structurally distinct compounds. Our computational
prediction pointed to tubulin as a common target for three of these
groups, and our phenotypic data and follow-up experimental work
supported this prediction (Fig. 6). Ligand-target prediction also
revealed multiple highly probable targets that appear within each of
four structural groups. Thus, parallel activity on these additional
targets could account for subtle phenotypic differences between
groups. Taken together, our results show that the combination of
cytological phenotypes can improve confidence levels in target pre-
diction both globally, as in our active compound set (Supplementary
Fig. 2), and with respect to specific targets (Fig. 6). Thus quantitative
cytological phenotypes, such as those derived here, may represent
a new set of compound descriptor data that could be included
directly into computational models to bolster compound-target
prediction efficiency.

Despite progress on analysis of HCS data reported here and else-
where40,41, the use of cytology to profile phenotypes in a broad and
quantitative manner is still in its infancy. We believe this method has
considerable potential. For example, new markers could be imple-
mented that enable predictive toxicology of active lead compounds.
Combined with chemical structure knowledge and ligand-target pre-
diction, as shown here, such approaches could provide detailed
mechanistic insight to help guide medicinal chemists early in the
lead optimization process. Dealing with complexities of predictive
toxicology will require breakthroughs in cytological image analysis,
target prediction schemes and data mining. Our integration of image-
based cytological phenotypes with chemical structure and computa-
tional ligand-target prediction represents a step forward in solving this
and other difficult drug discovery problems.

METHODS
Compound library. We screened and profiled a library of 6,547 compounds

derived from a diversity library (21%), a library of known bioactive compounds

(21%) and a natural products library (58%). The bioactive set comprises those

Novartis compounds that were recommended for promotion into development

as drug candidates. This library has been compiled from multiple internal

sources and includes entries irrespective of whether the compounds succeeded

in preclinical or clinical development, or were introduced into the market. The

natural products library consists of B3,800 compounds purified from plant

extracts and other natural sources. In all cases, compounds were stored

lyophilized and were determined by LC/MS to be at least 90% pure. Lyophilized

compounds were resuspended in DMSO for a stock concentration of 10 mM.

Immediately before, treatment samples of compound stock solution were

diluted in DMEM to a 6� working concentration of 60 mM. We provide a

table outlining all nonproprietary hit compound structures and available

PubChem IDs (Supplementary Data 2).

Compound transfer. HeLa cells (American Type Culture Collection) were

plated in 384-well, black clear-bottomed plates (Greiner) at a density of

2,000 cells per well in 25 ml of growth medium (DMEM, 10% fetal bovine

serum, penicillin and streptomycin; Invitrogen) for overnight incubation.

Compounds were diluted in DMEM, and 5 ml of diluted compound was

transferred to the 384-well culture plates at a final concentration of 10 mM per

well using the BioMek FX (Beckman Coulter). Plates were transferred to 37 1C

and incubated for 20 h.

Cell staining. After 20 h of incubation with compound, cells were pulsed with

500 nM 5-ethynl-2¢-deoxyuridine (Berry & Associates, Inc.) using a MultiDrop

(Thermo Lab Systems) and incubated for 40 min at 37 1C. Cells were fixed in

3.7% paraformaldehyde for 30 min at 25 1C. Cells were washed once with

phosphate-buffered saline (PBS; Invitrogen) with 0.5% Triton X-100 (PBST;

Sigma Aldrich) using a Biotek Plate washer (Biotek Instruments) and then

stained with rhodamine-azide (see Supplementary Methods). Plates were

washed again with PBST and then incubated with primary antibodies. Rabbit

anti-phosphohistone H3 Ser10 (Upstate) and mouse anti-a-tubulin (Sigma

Aldrich) were added and plates were incubated at 25 1C for 3 h. Cells were

washed once with PBST. Secondary antibodies donkey anti-mouse Alexa-488

(Invitrogen) and goat anti-rabbit Cy5 (Amersham) were added for 2 h at 25 1C.

Cells were washed once with PBST and stained with Hoescht 33342 (Invitro-

gen) for 30 min at 25 1C. Wells were washed once with PBST, filled with PBS

and sealed for imaging.

Imaging and image analysis. Plates were imaged with a Cellomics Arrayscan.

Images were collected using the XF93 filter set and 10� PlanFluor objective

with camera binning set at 2 � 2. Individual cell segmentation was done using

the Cellomics Morphology Explorer algorithm. Measurements for each cell

were made on DNA intensity, nuclear area, deoxyuridine incorporation and

phospho-H3 staining.

Analysis of image-based cytological phenotypes. A detailed description of

factor analysis and the phenotypic distance metric can be found in the

Supplementary Methods.

Target prediction model. Target prediction was performed using statistical

models of substructural features, based on an annotated chemogenomics

database that pairs ligand molecular structures and the biological targets they

act on. The underlying assumption made is the ‘‘molecular similarity princi-

ple,’’ which assumes that similar molecules are likely to show similar proper-

ties17. We used the WOMBAT database42 in version 2006.1 as a knowledge base

for training, which associates 154,236 ligands with 1,336 protein targets in

256,039 data entries. ECFP_4 fingerprints were calculated for washed and

normalized structures, and multiple category naive Bayes models with Lapla-

cian correction were trained on all data points, as implemented in PipelinePilot

5.1 (Scitegic). The five targets with the highest Bayes scores were considered for

further analysis. For further details on the target prediction used see the original

publication35 as well as a recent review that gives an overview of currently

available methods and also highlights some recent applications43. The method

used in this work is based on ECFP_4 descriptors, which are circular

fingerprints encoding molecules as a set of radial patches that in their

completeness again characterize the whole molecule. Circular fingerprints in

general have been found to contain significant information regarding bioactiv-

ity44–46, but it was recently shown that three-dimensional descriptors show

better generalization performance in case no bioactive structures similar to the

one under consideration are known47. Though overall a high prediction
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performance of the correct target for 470% of the structures could be achieved

in a validation study, the dependence of the method on the available knowledge

base (training set) must be kept in mind. This is particularly true for

new chemotypes.

Note: Supplementary information and chemical compound information is available on
the Nature Chemical Biology website.
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