Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium–O2 batteries

Abstract

The lithium–O2 ‘semi-fuel’ cell based on the reversible reaction of Li and O2 to form Li2O2 can theoretically provide energy densities that exceed those of Li-ion cells by up to a factor of five. A key limitation that differentiates it from other lithium batteries is that it requires effective catalysts (or ‘promoters’) to enable oxygen reduction and evolution. Here, we report the synthesis of a novel metallic mesoporous oxide using surfactant templating that shows promising catalytic activity and results in a cathode with a high reversible capacity of 10,000 mAh g−1 (1,000 mAh g−1 with respect to the total electrode weight including the peroxide product). This oxide also has a lower charge potential for oxygen evolution from Li2O2 than pure carbon. The properties are explained by the high fraction of surface defect active sites in the metallic oxide, and its unique morphology and variable oxygen stoichiometry. This strategy for creating porous metallic oxides may pave the way to new cathode architectures for the Li–O2 cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and structure of MP lead ruthenium pyrochlore.
Figure 2: Electrochemical characteristics and XRD patterns of the electrochemical discharge products from the Li–O2 battery.
Figure 3: Schematic of the proposed MP pyrochlore catalyst mechanism in the Li–air cell.
Figure 4: Electrocatalytic oxidation of Li2O2 and corresponding XRD pattern of the charged electrode.

Similar content being viewed by others

References

  1. Aricò, A. S., Bruce, P. G., Scrosati, B., Tarascon, J-M. & Schalkwijk, W. V. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  CAS  Google Scholar 

  2. Read, J. et al. Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery. J. Electrochem. Soc. 150, A1351–A1356 (2003).

    Article  CAS  Google Scholar 

  3. Débart, A., Paterson, A. J., Bao, J. & Bruce, P. G. α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 4521–4524 (2008).

    Article  CAS  Google Scholar 

  4. Laoire, C. O., Mukerjee, S. & Abraham, K. M. Elucidating the mechanism of oxygen reduction for lithium–air battery application. J. Phys. Chem. C 113, 20127–20134 (2009).

    Article  CAS  Google Scholar 

  5. Lu, Y-C., Gasteiger, H. A., Parent, M. C., Chiloyan, V. & Shao-Horn, Y. The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries. Electrochem. Solid State Lett. 13, A69–A72 (2010).

    Article  CAS  Google Scholar 

  6. Zhang, J., Xu, W., Li, X. & Liu, W. Air dehydration membrane for nonaqueous lithium–air batteries. J. Electrochem. Soc. 157, A940–A946 (2010).

    Article  CAS  Google Scholar 

  7. Trahey, L. et al. Activated lithium-metal-oxides as catalytic electrodes for Li–O2 cells. Electrochem. Solid State Lett. 14, A64–A66 (2011).

    Article  CAS  Google Scholar 

  8. Lee, J-S. et al. Metal–air batteries with high energy density: Li–air versus Zn–air. Adv. Energy Mater. 1, 34–50 (2011).

    Article  CAS  Google Scholar 

  9. Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996).

    Article  CAS  Google Scholar 

  10. Ogasawara, T., Débart, A., Holzapfel, M., Novák, P. & Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. McCloskey, B. D., Bethune, D. S., Shelby, R. M., Girishkumar, G. & Luntz, A. C. Solvents’ critical role in nonaqueous lithium–oxygen battery electrochemistry. J. Phys. Chem. Lett. 2, 1161–1166 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Beattie, S. D., Manolescu, D. M. & Blair, S. L. High-capacity lithium–air cathodes. J. Electrochem. Soc. 156, A44–A47 (2009).

    Article  CAS  Google Scholar 

  13. Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S. & Wilcke, W. Lithium–air battery: promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010).

    Article  CAS  Google Scholar 

  14. Laoire, C. O., Mukerjee, S., Plichta, E. J., Hendrickson, M. A. & Abraham, K. M. Rechargeable lithium/TEGDME–LiPF6/O2 battery. J. Electrochem. Soc. 158, A302–A308 (2011).

    Article  CAS  Google Scholar 

  15. McCloskey, B. D. et al. Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 3, 997–1001 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. McCloskey, B. D. et al. On the efficacy of electrocatalysis in nonaqueous Li–O2 batteries. J. Am. Chem. Soc. 133, 18038–18041 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Lu, Y-C. et al. Platinum–gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium–air batteries. J. Am. Chem. Soc. 132, 12170–12171 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Laoire, C. O., Mukerjee, S. & Abraham, K. M. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium–air battery. J. Phys. Chem. C 114, 9178–9186 (2010).

    Article  CAS  Google Scholar 

  19. Mizuno, F., Nakanishi, S., Kotani, Y., Yokoishi, S. & Iba, H. Rechargeable Li–air batteries with carbonate-based liquid electrolytes. Electrochemistry 78, 403–405 (2010).

    Article  CAS  Google Scholar 

  20. Freunberger, S. A. et al. Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040–8047 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Suntivich J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nature Chem. 3, 546–550 (2011).

    Article  CAS  Google Scholar 

  22. Neburchilov, V., Wang, H., Martin, J. J. & Qu, W. A review on air cathodes for zinc–air fuel cells. J. Power Sources 195, 1271–1291 (2010).

    Article  CAS  Google Scholar 

  23. Horowitz, H. S., Longo, J. M. & Horowitz, H. H. Oxygen electrocatalysis on some oxide pyrochlores. J. Electrochem. Soc. 130, 1851–1859 (1983).

    Article  CAS  Google Scholar 

  24. Goodenough, J. B., Manoharan, R. & Paranthaman, M. Surface protonation and electrochemical activity of oxides in aqueous solution. J. Am. Chem. Soc. 112, 2076–2082 (1990).

    Article  CAS  Google Scholar 

  25. Takeda, T., Kanno, R., Kawamoto, Y., Takeda, Y. & Yamamoto, O. New cathode materials for solid oxide fuel cells ruthenium pyrochlores and perovskites. J. Electrochem. Soc. 147, 1730–1733 (2000).

    Article  CAS  Google Scholar 

  26. Subramanian, M. A., Aravamudan, G. & Subba Rao, G. V. Oxide pyrochlores— a review. Prog. Solid State Chem. 15, 55–143 (1983).

    Article  CAS  Google Scholar 

  27. Akazawa, T., Inaguma, Y., Katsumata, T., Hiraki, K. & Takahashi, T. Flux growth and physical properties of pyrochlore Pb2Ru2O6.5 single crystals. J. Cryst. Growth 271, 445–449 (2004).

    Article  CAS  Google Scholar 

  28. Cheng, F. et al. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nature Chem. 3, 79–84 (2010).

    Article  CAS  Google Scholar 

  29. Lai, X. et al. Ordered mesoporous copper oxide with crystalline walls. Angew. Chem. Int. Ed. 46, 738–741 (2007).

    Article  CAS  Google Scholar 

  30. Jiao, F. & Bruce, P. G. Mesoporous crystalline β-MnO2—a reversible positive electrode for rechargeable lithium batteries. Adv. Mater. 19, 657–660 (2007).

    Article  CAS  Google Scholar 

  31. Shi, Y. et al. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett. 9, 4215–4220 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Boissière, C., Grosso, D. & Prouzet, E. in Nanomaterials: Inorganic and Bioinorganic Perspectives (eds Lukehart, C. M. & Scott, R. A.) 381–397 (Wiley, 2008).

    Google Scholar 

  33. Bagshaw, S. A., Prouzet, E. & Pinnavaia, T. J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science 269, 1242–1244 (1995).

    Article  PubMed  Google Scholar 

  34. Horowitz, H. S., Longo, J. M. & Lewandowski, J. T. New oxide pyrochlores: A2[B2–xAx]O7–y (A = Pb, Bi; B = Ru, Ir). Mater. Res. Bull. 16, 489–496 (1981).

    Article  CAS  Google Scholar 

  35. Beyerlein, R. A., Horowitz, H. S. & Longo, J. M. The electrical properties of A2[Ru2–xAx]O7–y (A = Pb or Bi) pyrochlores as a function of composition and temperature. J. Solid State Chem. 72, 2–13 (1988).

    Article  CAS  Google Scholar 

  36. Zhao, D. et al. Triblock copolymer synthesis of mesoporous silica with periodic 50 to 300 ångstrom pores. Science 279, 548–552 (1988).

    Article  Google Scholar 

  37. Mitchell, R. R., Gallant, B. M., Thompson, C. V. & Shao-Horn, Y. All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries. Energy Environ. Sci. 4, 2952–2958 (2011).

    Article  CAS  Google Scholar 

  38. Lu, Y-C. et al. The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ. Sci. 4, 2999–3007 (2011).

    Article  CAS  Google Scholar 

  39. Bryantsev, V. S. et al. Predicting solvent stability in aprotic electrolyte Li–air batteries: nucleophilic substitution by the superoxide anion radical (O2•−). J. Phys. Chem. A 115, 12399–12409 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Yeager, E. Dioxygen electrocatalysis: mechanism in relation to catalyst structure. J. Mol. Catal. 38, 5–25 (1986).

    Article  CAS  Google Scholar 

  41. Lu, Y-C. et al. Electrocatalytic activity studies of select metal surfaces and implications in Li–air batteries. J. Electrochem. Soc. 157, A1016–A1025 (2010).

    Article  CAS  Google Scholar 

  42. Freunberger, S. A. et al. The lithium–oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. 50, 8609–8613 (2011).

    Article  CAS  Google Scholar 

  43. Mizuno, F. et al. Design of non-aqueous liquid electrolytes for rechargeable Li–O2 batteries. Electrochemistry 79, 876–881 (2011).

    Article  CAS  Google Scholar 

  44. Zhang, Z. et al. Increased stability toward oxygen reduction products for lithium–air batteries with oligoether-functionalized silane electrolytes. J. Phys. Chem. C 115, 25535–25542 (2011).

    Article  CAS  Google Scholar 

  45. Black, R. et al. Screening for superoxide reactivity in Li–O2 batteries. J. Am. Chem. Soc. 134, 2902–2905 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Tarascon, J-M., Gozdz, A. S., Schmutz, C., Shokoohi, F. & Warren, P. C. Performance of Bellcore's plastic rechargeable Li-ion batteries. Solid State Ionics 86–88, 49–54 (1996).

    Article  Google Scholar 

  47. Amatucci, G. G., Tarascon, J-M. & Klein, L. C. CoO2: the end member of the LixCoO2 solid solution. J. Electrochem. Soc. 143, 1114–1123 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Natural Sciences and Engineering Council of Canada for support through its Strategic, Discovery, and Canada Research Chair programmes.

Author information

Authors and Affiliations

Authors

Contributions

S.H.O. and L.F.N. developed the concept and designed the experiments. S.H.O. carried out the experimental work. R.B. and E.P. helped with the design and experiments, as well as the SEM imaging. J.H.L. contributed to some experiments involving characterization and electrochemistry.

Corresponding author

Correspondence to Linda F. Nazar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 18550 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, S., Black, R., Pomerantseva, E. et al. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium–O2 batteries. Nature Chem 4, 1004–1010 (2012). https://doi.org/10.1038/nchem.1499

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1499

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing