Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Review
  • Published:

Encapsulated cell technology

Abstract

The potential therapeutic applications of encapsulated cells are enormous. In the US alone, it has been estimated that nearly half-a-trillion dollars are spent each year to care for patients who suffer tissue loss or dysfunction. Over 6 million patients suffer from neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, over 14 million patients suffer from diabetes, and millions more from liver failure, hemophilia, and other diseases caused by the loss of specific vital cellular functions. It appears likely that by the end of the decade clinical trials of encapsulated cells to treat many of these diseases will become a reality. The Food and Drug Administration has already authorized studies to evaluate the safety and biological activity of several types of systems. A number of issues will have to be addressed, including the sourcing of raw materials, the design and building of manufacturing facilities, the scale-up and optimization process, storage and distribution of the product, and quality control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lanza, R.P. and Chick, W.L. 1995. Encapsulated cell therapy. Scientific American Science & Medicine. 2: 16–25.

    Google Scholar 

  2. Lanza, R.P. and Chick, W.L. (eds.). 1994. Pancreatic islet transplantation: Volume III Immunoisolation of pancreatic islets. Landes/CRC Press. Austin, TX.

    Google Scholar 

  3. Lanza, R.P. and Chick, W.L. 1995. Encapsulated cell transplantation. Transplantation Reviews 9: 217–230.

    Article  Google Scholar 

  4. Soon-Shiong, P., Lu, Z.N., Grewal, I., Lanza, R.P., and Clark, W. 1990. An in vitro method of assessing the immunoprotective properties of microcapsule membranes using pancreatic and tumor cell targets. Transient Proc. 22: 754–755.

    CAS  Google Scholar 

  5. Darquy, S. and Reach, G. 1985. Immunoisolation of pancreatic β cells by micro-encapsulation. Diabetologia 28: 776–780.

    CAS  PubMed  Google Scholar 

  6. Lanza, R.P., Kühtreiber, W.M., Ecker, D., Staruk, J.E., and Chick, W.L. 1995. Xenotransplantation of porcine and bovine islets without immunosuppression using uncoated alginate microspheres. Transplantation 59: 1377–1384.

    Article  CAS  Google Scholar 

  7. Mito, M. and Sawa, M. 1996. Hepatocyte transplantation, pp. 127–133 in 1996/97 Yearbook of cell and tissue transplantation. Lanza, R.P. and Chick, W.L. (eds.). Kluwer Academic Press, Dordrecht, the Netherlands.

    Google Scholar 

  8. Yang, M.D., Vacanti, J.P., and Ingber, D.E. 1994. Hollow fibers for hepatocyte encapsulation and transplantation: Studies of survival and function in rats. Cell Transplant. 3: 373–385.

    Article  CAS  Google Scholar 

  9. Jauregui, H.O., Mullon, C.J-P., and Solomon, B.A. 1996. Extracorporeal artificial liver support, in Principles of tissue engineering. Lanza, R.R, Langer, R., and Chick, W.L. (eds.). Landes/Academic Press, Austin, TX.

    Google Scholar 

  10. Eguchi, S., Chen, S., Rozga, J., and Demetriou, A.A. 1996. Tissue engineering/ hybrid tissues: liver, pp. 247–252 in 1996/97 Yearbook of cell and tissue transplantation. Lanza, R.R and Chick, W.L. (eds.). Kluwer Academic Press. Dordrecht, the Netherlands.

    Google Scholar 

  11. Cai, Z.H., Shi, Z.Q., Sherman, M., and Sun, A.M. 1989. Development and evaluation of a system of microencapsulation of primary rat hepatocytes. Hepatology 10: 855–860.

    Article  CAS  Google Scholar 

  12. Sun, A.M., Cai, Z., Shi, Z., Ma, F., and O'Shea, G.M. 1987. Microencapsulated hepatocytes: an in vitro and in vivo study. Biomat Art. Cells Art. Org. 15: 1483–1496.

    Google Scholar 

  13. Sagen, J. 1996. Chromaffin cell transplantation, pp. 71–89 in 1996/97 Yearbook of cell and tissue transplantation. Lanza, R.P. and Chick, W.L. (eds.). Kluwer Academic Press. Dordrecht, the Netherlands.

    Google Scholar 

  14. Roberts, H.R. 1989. The treatment of hemophilia: past tragedy and future promise. N. Engl. J. Med. 321: 1188–1190.

    Article  CAS  Google Scholar 

  15. Chang, P.L., Shen, N., and Westcott, A.J. 1993. Delivery of recombinant gene products with microencapsulated cells in vivo. Hum. Gene Ther. 4: 433–440.

    Article  CAS  Google Scholar 

  16. Aebischer, P. and Lysaght, M.J. 1995. Immunoisolation and cellular xenotrans-plantation. Xeno. 3: 43–48.

    Google Scholar 

  17. Ezzell, C. 1995. Tissue engineering and the human body shop: encapsulated-cell transplants enter the clinic. J. NIH Research 7: 47–51.

    Google Scholar 

  18. Tresco, P.A., Winn, S.R., and Aebischer, P. 1992. Polymer encapsulated neuro-transmitter secreting cells. Potiential treatment for Parkinson's disease. ASAIO J 38: 17–23.

    Google Scholar 

  19. Freed, W.J. 1996. Neural transplantation: brain, pp. 163–173 in 1996/97 Yearbook of cell and tissue transplantation. Lanza, R.P and Chick, W.L. (eds.). Kluwer Academic Press. Dordrecht, the Netherlands.

    Google Scholar 

  20. Widner, H., Brundin, J., Rehncroma, S., Gustavii, B., Frackowiak, R., Leenders, K.L., et al. 1991. Transplanted allogeneic fetal dopamine neurons survive and improve motor function in idiopathic Parkinson's Disease. Transplant Proc. 23: 793–795.

    CAS  PubMed  Google Scholar 

  21. Aebischer, P., Goddard, M., Signore, A.P., and Timpson, R.L. 1994. Functional recovery in hemiparkinsonian primates transplanted with polymer-encapsulated PC12 cells. Exp. Neurol. 126: 151–158.

    Article  CAS  Google Scholar 

  22. Phelps, C.H., Gage, F.H., Growdon, J.H., Hefti, F., Harbaugh, R., Johnston, M.V., et al. 1989. Potential use of nerve growth factor to treat Alzheimer's disease. Neurobiol. of Aging 10: 205–207.

    Article  CAS  Google Scholar 

  23. Hoffman, D., Breakefield, X.O., Short, M.P., et al. 1993. Transplantation of a polymer-encapsulated cell line genetically engineered to release NGF. Exp. Neurol. 122: 100–106.

    Article  CAS  Google Scholar 

  24. Soon-Shiong, P., Heintz, R.E., Merideth, N., Yao, Q.X., Yao, Z., Zheng, T., et al. 1994. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 143: 950–951.

    Article  Google Scholar 

  25. Calafiore, R. 1992. Transplantation of microencapsulated pancreatic human islets for therapy of diabetes mellitus. ASAIO J. 38: 34–37.

    Article  CAS  Google Scholar 

  26. Sharp, D.W., Swanson, C.J., Olack, B.J., et al. 1994. Protection of encapsulated human islets implanted without immunosuppression in patients with type I or type II diabetes and in nondiabetic control subjects. Diabetes 43: 1167–1170.

    Article  Google Scholar 

  27. Aebischer, P., Buchser, E., Joseph, J.M., Favre, J., de Tribolet, N., Lysaght, M., et al. 1994. Transplantation in humans of encapsulated xenogeneic cells without immunosuppression. Transplantation 58: 1275–1277.

    Article  CAS  Google Scholar 

  28. Ezzell, C. 1987. Tissue engineering and the human body shop: encapsulated-cell transplants enter the clinic. J. NIH Research 7: 47–51.

    Google Scholar 

  29. Matsumura, K.N., Guevara, G.R., Huston, H. et al. 1987. Hybrid bioartificial liver in hepatic failure: Preliminary clinical report. Surgery 101: 151–157.

    Google Scholar 

  30. Sutherland, D.E.R., Gruessner, R.W.G., and Gores, P.F. 1994. Pancreas and islet transplantation. Transplant Rev. 8: 185–206.

    Article  Google Scholar 

  31. Gores, P.E. and Sutherland, D.E.R. 1994. Immunosuppression for islet transplantation, pp. 63–74 in Pancreatic islet transplantation: volume II immunomodulation of pancreatic islets. Lanza, R.P. and Chick, W.L. (eds.). Landes/CRC Press. Austin, TX.

    Google Scholar 

  32. Hering, B.J., Geier, C., Schultz, A.O., Bretzel, R.G., and Federlin, K. International islet transplant registry. Presented at the 14th AIDSPIT Meeting, January 1995, Igls, Austria.

  33. Kahan, B.D. 1989. Cyclosporine. N. Engl. J. Med. 321: 1725–1738.

    Article  CAS  Google Scholar 

  34. Fung, J.J., Alessiani, M., Abu-Elmagd, K., Todo, S., Shapiro, R., Tzakis, A., et al. 1992. Adverse effects associated with the use of FK 506. Transplant Proc. 23: 3105–3108.

    Google Scholar 

  35. Gunnarsson, R., et al. 1983. Deterioration in glucose metabolism in pancreatic transplant recipients given cyclosporin. Lancet 2: 571–572.

    Article  CAS  Google Scholar 

  36. Alejandro, R., Feldman, E.C., Bloom, A.D., and Kenyon, N.S. 1989. Effects of cyclosporin on insulin and C-peptide secretion in healthy beagles. Diabetes 38: 698–703.

    Article  CAS  Google Scholar 

  37. Schlumpf, R., Largiader, F., Uhlschmid, G.K., and Baumgartner, D. 1986. Is cyclosporine toxic for transplanted pancreatic islets? Transplant Proc. 28: 1169–1170.

    Google Scholar 

  38. Van Schilfgaarde, R., van der Burg, M.P.M., van Suylichem, H.G., Goosen, H.G., and Frolich, M. 1986. Does cyclosporin influence beta cell function? Transplant Proc. 28: 1175–1176.

    Google Scholar 

  39. Lanza, R.P., Sullivan, S.J., and Chick, W.L. 1992. Islet transplantation with immunoisolation. Diabetes 41: 1503–1510.

    Article  CAS  Google Scholar 

  40. Chick, W.L., Perna, J.J., Lauris, V., Low, D., Galletti, P.M., Panol, G., et al. 1977. Artificial pancreas using live β-cells: Effects of glucose homeostasis in diabetic rats. Science 197: 780–782.

    Article  CAS  Google Scholar 

  41. Tze, W.J., Wong, F.C., and Chen, I.M. 1976. Implantable artificial endocrine pancreas unit used to restore normoglycemia in the diabetic rat. Nature 264: 466–467.

    Article  CAS  Google Scholar 

  42. Whittemore, A.D., Chick, W.L., Galletti, P.M., Like, A.A., Colton, C.K., Lysaght, M.J., et al. 1977. Effects of the hybrid artificial pancreas in diabetic rats. Trans. Am. Soc. Artif. Intern. Organs 13: 336–340.

    Article  Google Scholar 

  43. Sun, A.M., Parisius, W., Healy, G.M., Vacek, I., and Macmorine, H.G. 1977. The use in diabetic rats and monkeys of artificial capillary units containing cultured islets of Langerhans. Diabetes 26: 1136–1139.

    Article  CAS  Google Scholar 

  44. Feldman, S., Dodi, G., Haid, K., Scharp, D.W., Ballinger, W., and Lacy, P.E. 1977. Artificial hybrid pancreas. Surg. Forum 28: 439–442.

    CAS  PubMed  Google Scholar 

  45. Tze, W.J., Wong, F.C., and Chen, L.M. 1979. Implantable artificial capillary unit for pancreatic islet allograft and xenograft. Diabetologia 16: 247–252.

    Article  CAS  Google Scholar 

  46. Sun, A.M., Parisius, W., MacMorine, H.G., Sefton, M. and Stone, R. 1980. An artificial endocrine pancreas containing cultured islets of Langerhans. Artif. Organs 4: 275–278.

    Article  CAS  Google Scholar 

  47. Lanza, R.P., Solomon, B.A., Monaco, A.P. and Chick, W.L. 1994. Devices implanted as AV shunts, pp. 154–168 in Pancreatic islet transplantation: volume III immunoisolation of pancreatic islets. Lanza, R.P. and Chick, W.L. (eds.). Landes/CRC Press. Austin, TX.

    Google Scholar 

  48. Sullivan, S.J., Maki, T., Borland, K.M., Mahoney, M.D., Solomon, B.A., Muller, T.E., et al. 1991. Biohybrid artificial pancreas: Long-term implantation studies in diabetic, pancreatectomized dogs. Science 252: 718–721.

    Article  CAS  Google Scholar 

  49. Maki, T., Otsu, I., O'Neil, J.J., Dunleavy, K., Mullon, C.J.P., Solomon, B.A., and Monaco, A.P. 1996. Treatment of diabetes by xenogeneic islets without immunosuppression. Diabetes 45: 342–347.

    Article  CAS  Google Scholar 

  50. Colton, C.K. 1995. Implantable biohybrid artificial organs. Cell Transplant 4: 415–436.

    Article  CAS  Google Scholar 

  51. Lanza, R.P. and Chick, W.L. 1994. Introduction, pp. 1–12 in Pancreatic islet transplantation: volume III immunoisolation of pancreatic islets. Lanza, R.P. and Chick, W.L. (eds.). Landes/CRC Press. Austin, TX.

    Google Scholar 

  52. Lanza, R.P., Butler, D.H., Borland, K.M., Staruk, J.E., Faustman, D.L., Solomon, B.A., et al. 1991. Xenotransplantation of canine, bovine, and porcine islets in diabetic rats without immunosuppression. Proc. Natl. Acad. Sci. USA 88: 11100–11104.

    Article  CAS  Google Scholar 

  53. Lanza, R.P., Borland, K.M., Lodge, P., Carretta, M., Sullivan, S.J., Muller, T.E., et al. 1992. Treatment of severely diabetic, pancreatectomized dogs using a diffusion-based hybrid pancreas. Diabetes 41: 886–889.

    Article  CAS  Google Scholar 

  54. Lanza, R.P., Borland, K.M., Staruk, J.E., Appel, M.C., Solomon, B.A., and Chick, W.L. 1992. Transplantation of encapsulated canine islets into spontaneously diabetic BB/Wor rats without immunosuppression. Endocrinology 131: 637–642.

    CAS  PubMed  Google Scholar 

  55. Lanza, R.P., Beyer, A.M., Staruk, J.E., and Chick, W.L. 1993. Biohybrid artificial pancreas: longterm function of discordant islet xenografts in streptozotocin diabetic rats. Transplantation 56: 1067–1072.

    Article  CAS  Google Scholar 

  56. Andersson, A. 1979. Survival of pancreatic islet allografts. Lancet 2: 585.

    Article  Google Scholar 

  57. Theodorou, N.A. and Howell, S. 1979. An assessment of diffusion chambers for use in pancreatic islet cell transplantation. Transplantation 27: 350–352.

    CAS  PubMed  Google Scholar 

  58. Lim, F. and Sun, A.M. 1980. Microencapsulated islets as bioartificial endocrine pancreas. Science 210: 908–910.

    Article  CAS  Google Scholar 

  59. O'Shea, G.M., Goosen, M.F.A., and Sun, A.M. 1984. Prolonged survival of transplanted islets of Langerhans encapsulated in a biocompatible membrane. Biochim. Biophys. Acta. 804: 133–136.

    Article  CAS  Google Scholar 

  60. Wang, Y., Hao, L., Gill, R., and Lafferty, K.J. 1987. Autoimmune diabetes in NOD mouse is L3T4 T-lymphocyte dependent. Diabetes 36: 535–538.

    Article  CAS  Google Scholar 

  61. Calafiore, R., Janjic, D., Koh, N., and Alejandro, R. 1987. Transplantation of microencapsulated canine islets into NOD mice: prolongation of survival with superoxide dismutase and catalase. Clin. Res. 35: 499A.

    Google Scholar 

  62. Ricker, A., Bhatia, V., Bonner-Weir, S., and Eisenbarth, G. 1987. Microencapsulated xenogeneic islet grafts in NOD mouse; dexamethasone and inflammatory response. Cold Spring Harbor Symposium, October, p. 53A.

    Google Scholar 

  63. Platt, J.L. and Bach, F.H. 1991. The barrier to Xenotransplantation. Transplantation 52: 937.

    Article  CAS  Google Scholar 

  64. Lanza, R.P., Ecker, D., Kühtreiber, W.M., Staruk, J.E., Marsh, J., and Chick, W.L. 1995. A simple method for transplanting discordant islets into rats using alginate gel spheres. Transplantation 59: 1486–1487.

    Google Scholar 

  65. Soon-Shiong, P., Feldman, E., Nelson, R., Heintz, R., Yao, Q., Yao, Z., et al. 1993. Long-term reversal of diabetes by the injection of immunoprotected islets. Proc. Natl. Acad. Sci. USA 90: 5843–5847.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanza, R., Hayes, J. & Chick, W. Encapsulated cell technology. Nat Biotechnol 14, 1107–1111 (1996). https://doi.org/10.1038/nbt0996-1107

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0996-1107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing