Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Direct demonstration of MuSK involvement in acetylcholine receptor clustering through identification of agonist ScFv

Abstract

MuSK is a tyrosine kinase localized to the postsynaptic surface of the neuromuscular junction. We have searched for modulators of MuSK function using a library of human single chain variable region antibodies (scFv) that can be displayed on M13 phage or expressed as soluble protein. A panel of 21 independent MuSK-specific scFv, identified in a screen for binding to MuSK-Fc immunoadhesin, were examined for ability to induce proliferation in a factor dependent cell line (Ba/F3) through a chimeric receptor, MuSK-Mpl. Four of the scFv induced a proliferative response, suggesting an ability to induce dimerization of MuSK. These scFv were also able to induce tyrosine phosphorylation of full-length MuSK and retained this ability when re-engineered to be expressed as authentic (and dimeric) human IgG molecules. Addition of agonist scFv to a cultured myotube cell line induced AChR clustering and tyrosine phosphorylation. These results provide direct evidence that MuSK activation is capable of triggering a key event in neuromuscular junction formation and further demonstrate that large libraries of phage-displayed scFv provide a robust method for generating highly specific agonist agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Valenzuela, D.M., Stitt, T.N., DiStefano, P.S., Rojas, E., Mattsson, K., Compton, D.L, et al. 1995. Receptor tyrosine kinase specific for the skeletal muscle lineage: Expression in embryonic muscle, at the neuromuscular junction, and after Injury. Neuron 15: 573–584.

    Article  CAS  Google Scholar 

  2. Dechiara, T.M., Bowen, D.C., Valenzuela, D.M., Simmons, M.V., Poueymirou, W.T., Thomas, S., et al. 1996. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85: 501–512.

    Article  CAS  Google Scholar 

  3. Gautam, M., Noakes, P.G., Moscoso, L, Rupp, R, Scheller, R.H., Merlie, J.P., and Sanes, J.R., 1996. Defective Neuromuscular Synaptogenesis in Agrin-Deficient Mutant Mice. Cell 85: 525–535.

    Article  CAS  Google Scholar 

  4. Glass, D.J., Bowen, D.C., Stitt, T.N., Radziejewski, C., Bruno, J., Ryan, T.E., D.R., et al. 1996. Agrin acts via a MuSK receptor complex. Cell 85: 513–523.

    Article  CAS  Google Scholar 

  5. Kleiman, J. and Reichart, L.F. 1996. Testing theagrin hypothesis. Cell 85: 461–464.

    Article  CAS  Google Scholar 

  6. Bowe, M.A. and Fallen, J.R. 1995. The role of agrin in synapse formation. Annu-Rev-Neurosci. 18: 443–462.

    Article  CAS  Google Scholar 

  7. Godfrey, E.W., Nitkin, R.M., Wallace, B.G., Rubin, L.L., and McMahan, U.J. 1984. Components of Torpedo electric organ and muscle that cause aggregation of acetylcholine receptors on culture muscle cells. J. Cell Biol. 99: 615–627.

    Article  CAS  Google Scholar 

  8. Nitkin, R.M., Smith, M.A., Magill, C., Fallon, J.R., Yao, M.Y.-M., Wallace, B.G., and McMahan, U.J. 1987. Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J. Cell Biol. 105: 2471–2478.

    Article  CAS  Google Scholar 

  9. O'Toole, J.J., Deyst, K.A., Bowe, M.A., Nastuk, M.A., McKechnie, B.A., and Fallon, J.R. 1996. Alternative splicing of agrin regulates its binding to heparin alpha-dystroglycan. Prac. Natl. Acad. Sci. USA 93: 7369–7374.

    Article  CAS  Google Scholar 

  10. Cunningham, B.C., Ultsch, M., De-Vos, A.M., Mulkerrin, M.G., Clauser, K.R., and Wells, J.A. 1991. Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone molecule. Science 254: 821–825.

    Article  CAS  Google Scholar 

  11. Carter, S.C., Schwartz, J., and Smit, L.S., 1996. Molecular mechanism of growth hormone action. Annu-Rev-Physiol. 58: 187–207.

    Article  Google Scholar 

  12. Gurney, A.L, Wong, S.C., Henzel, W.J., and DeSauvage, F.J. 1995. Distinct Regions of c-Mpl cytoplasmic domain are coupled to the JAK-STAT signal trans-duction and She phosphorylation. Prac. Natl. Acad. Sci. USA 92: 5292–5296.

    Article  CAS  Google Scholar 

  13. Ruegg, M.A., Tsim, K.W., Norton, S.E., Kroger, S., Escher, G., Gensch, E.M., and McMahan, J.J. 1992. The agrin gene codes for a family of basal lamina proteins that differ in function and distribution. Neuron 8: 691–699.

    Article  CAS  Google Scholar 

  14. Tsim, K.W.K., Ruegg, M.A., Escher, G., Kroger, S., and McMahan, U.J. 1992. cDNA that Encodes Active Agrin. Neuron 8: 677–689.

    Article  CAS  Google Scholar 

  15. Rupp, F., Payan, D.G., Magill-Solc, C., Cowan, D.M., and Scheller, R.H. 1991. Structure and Expression of a Rat Agrin. Neuron 6: 811–823.

    Article  CAS  Google Scholar 

  16. Kortt, A.A., Malby, R.L., Caldwell, J.B., Gruen, L.C., Ivanci, N., Lawrence, M.C. et al. 1994. Recombinant anti-sialidase single-chain variable fragment antibody. Characterization, formation of dimer and higher-molecular-mass multimers and the solution of the crystal structure of the single-chain variable fragment/siali-dase complex. Eur. J. Biochem. 221: 151–157.

    Article  CAS  Google Scholar 

  17. Alfthan, K., Takkinen, K., Sizman, D., Soderlund, H., and Teeri, T.T. 1995. Properties of a single chain antibody containing different linker peptides. Protein-Eng. 8: 725–731.

    Article  CAS  Google Scholar 

  18. Ferns, M.J., Campanelli, J.T., Hoch, W., Scheller, R.H., and Hall, Z. 1993. The ability of agrin to cluster AChRs depends on alternative splicing and on cell surface proteoglycans. Neuron 11: 491–502.

    Article  CAS  Google Scholar 

  19. Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., McCafferty, J., et al. 1993.Human anti-self antibodies with high specificity from phage display libraries. EMBO-J 12: 725–734.

    Article  CAS  Google Scholar 

  20. Clackson, T., Hoogenboom, H.R., Griffiths, A.D., and Winter, G. 1991. Making antibody fragments using phage display libraries. Nature 352: 642–648.

    Article  Google Scholar 

  21. Mark, M.R., Chen, J., Hammonds, G., Sadick, M., and Godowski, P.J. 1996. Characterization of Gas6, a member of the superfamily of G domain-containing proteins, as a ligand for Rse and Axl. J. Biol. Chem. 271: 9785–9789.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, MH., Yuan, J., Adams, C. et al. Direct demonstration of MuSK involvement in acetylcholine receptor clustering through identification of agonist ScFv. Nat Biotechnol 15, 768–771 (1997). https://doi.org/10.1038/nbt0897-768

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0897-768

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing