Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

An enzyme-linked oligonucleotide assay

Abstract

The recent development of in vitro methods to select high-affinity ligands by combinatorial chemistry methodologies promises unique and theoretically unlimited supplies of novel therapeutic and diagnostic reagents. One such combinatorial chemistry process, systematic evolution of ligands by exponential enrichment (SELEX), allows rapid identification, from large random sequence pools, of the few oligonucleotide sequences that bind to a desired target molecule with high affinity and specificity. We describe an enzyme-linked sandwich assay that uses a SELEX-derived oligonucleotide. This assay demonstrates that these oligonucleotides can be effective and useful analytical reagents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yalow, R.S. and Berson, S.A. 1959. Assay of plasma insulin in human subjects by immunological methods. Nature 184: 1648–1649.

    Article  CAS  PubMed  Google Scholar 

  2. Engvall, E. and Perlmann, P. 1971. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochem. 8: 871–874.

    Article  CAS  Google Scholar 

  3. Crowther, J.R. (ed.). 1995. ELISA theory and practice, in Methods in molecular biology. Humana Press Inc., Totowa, NJ.

    Google Scholar 

  4. Burgess, G.W. (ed.). 1988. ELISA technology in diagnosis and research. Graduate School of Tropical Veterinary Science, James Cook University of North Queensland, Townsville, Australia.

    Google Scholar 

  5. Riter, M.A. and Ladyman, H.M. (eds.). 1995. Monoclonal antibodies. Cambridge University Press, New York, NY.

    Google Scholar 

  6. Abraham, R., Buxbaum, S., Link, J., Smith, R., Venti, C., and Darsley, M. 1995. Screening and kinetic analysis of recombinant anti-CEA antibody fragments. J. Immunol. Methods 183: 119–125.

    Article  CAS  PubMed  Google Scholar 

  7. Gallop, M.A., Barrett, R.W., Dower, W.J., Fodor, S.P.A., and Gordon, E.M. 1994. Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries. J. Med. Chem. 37: 1233–1251.

    Article  CAS  PubMed  Google Scholar 

  8. Gordon, E.M., Barrett, R.W., Dower, W.J., Fodor, S.P.A., and Gallop, M.A. 1993. Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions. J. Med. Chem. 37: 1385–1401.

    Article  Google Scholar 

  9. Abelson, J. 1990. Directed evolution of nucleic acids by independent replication and selection. Science 249: 488–489.

    Article  CAS  PubMed  Google Scholar 

  10. Tuerk, C. and Gold, L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505–510.

    Article  CAS  PubMed  Google Scholar 

  11. Irvine, D., Tuerk, C., and Gold, L. 1991. SELEXION, systematic evolution of ligands by exponential enrichment with integrated optimization by non-linear analysis. J. Mol. Biol. 222: 739–761.

    Article  CAS  PubMed  Google Scholar 

  12. Gold, L. 1995. Oligonucleotides as research, diagnostic, and therapeutic agents. J. Biol. Chem. 270: 13581–13584.

    Article  CAS  PubMed  Google Scholar 

  13. Gold, L., Polisky, B., Uhlenbeck, O., and Yarus, M. 1995. Diversity of oligonu-cleotide functions. Annu. Rev. Biochem. 64: 763–797.

    Article  CAS  PubMed  Google Scholar 

  14. Ellington, A.D. 1994. Aptamers achieve the desired recognition. Current Biology 4: 427–429.

    Article  CAS  PubMed  Google Scholar 

  15. Tuerk, C., MacDougal, S., and Gold, L. 1992. RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc. Natl. Acad. Sci. USA 89: 6988–6992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jellinek, D., Lynott, C.K., Rifkin, D.B., and Janjic, N. 1993. High-affinity RNA ligands to basic fibroblast growth factor inhibit receptor binding. Proc. Natl. Acad. Sci. USA 90: 11227–11231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jellinek, D., Green, L.S., Bell, C., and Janjic, N. 1994. Inhibition of receptor binding by high-affinity RNA ligands to vascular endothelial growth factor. Biochemistry 33: 10450–10456.

    Article  CAS  PubMed  Google Scholar 

  18. Doudna, J.A., Cech, T.R., and Sullenger, B.A. 1995. Selection of an RNA molecule that mimics a major autoantigenic epitope of human insulin receptor. Biochemistry 92: 2355–2359.

    CAS  Google Scholar 

  19. Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H., and Toole, J.J. 1992. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355: 564–566.

    Article  CAS  PubMed  Google Scholar 

  20. Kubik, M.F., Stevens, A.W., Schneider, D., Marlar, R.A., and Tassett, D. 1994. High-affinity RNA ligands to human α-thrombin. Nucleic Acids Res. 22: 2619–2626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin, Y., Qiu, Q., Gill, S.C., and Jayasena, S.D. 1994. Modified RNA sequence pools for in vitro selection. Nucleic Acids Res. 22: 5229–5234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nieuwlandt, D., Wecker, M., and Gold, L. 1995. In vitro selection of RNA ligands to substance P. Biochemistry 34: 5651–5659.

    Article  CAS  PubMed  Google Scholar 

  23. Ellington, A.D. and Szostak, J.W. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818–822.

    Article  CAS  PubMed  Google Scholar 

  24. Ellington, A.D. and Szostak, J.W. 1992. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355: 850–852.

    Article  CAS  PubMed  Google Scholar 

  25. Famulok, M. and Szostak, J. 1992. Stereospecific recognition of tryptophan agarose by in vitro selected RNA. J. Am. Chem. Soc. 114: 3990–3991.

    Article  CAS  Google Scholar 

  26. Famulok, M. 1994. Molecular recognition of amino acids by RNA-aptamers: An L-citrulline binding RNA motif and its evolution into an L-arginine binder. J. Am. Chem. Soc. 116: 1698–1706.

    Article  CAS  Google Scholar 

  27. Connell, G.J., Illangesekare, M., and Yarus, M. 1993. Three small ribooligonu-cleotides with specific arginine sites. Biochemistry 32: 5497–5502.

    Article  CAS  PubMed  Google Scholar 

  28. Sassanfar, M., and Szostak, J. 1993. An RNA motif that binds ATP. Nature 364: 550–553.

    Article  CAS  PubMed  Google Scholar 

  29. Conell, G.J. and Yarus, M. 1994. RNAs with dual specificity and dual RNAs with similar specificity. Science 264: 1137–1141.

    Article  Google Scholar 

  30. Jenison, R.D., Gill, S.C., Pardi, A., and Polisky, B. 1994. High-resolution molecular discrimination by RNA. Science 263: 1425–1429.

    Article  CAS  PubMed  Google Scholar 

  31. McGown, L.B., Joseph, M.J., Pitner, J.B., Vonk, G.P., and Linn, C.P. 1995. The nucleic acid ligand: A new tool for molecular recognition. Analytical Chemistry 67: 663A–668A.

    CAS  PubMed  Google Scholar 

  32. Claffey, K.P., Wilkison, W.O., and Spiegelman, B.M. 1992. Vascular endothelial growth factor regulation by cell differentiation and activated second messenger pathways. J. Biol. Chem. 267: 16317–16322.

    CAS  PubMed  Google Scholar 

  33. Leung, D.W., Cachianes, G., Kuang, W.-J., Goeddel, D.V., and Ferrara, N. 1989. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246: 1306–1309.

    Article  CAS  PubMed  Google Scholar 

  34. Tischer, E., Mitchell, R., Hartman, T., Silva, M., Gospodarowicz, D., Fiddes, J.C., et al. 1991. The human gene for vascular endothelial growth factor. J. Biol. Chem. 266: 11947–11954.

    CAS  PubMed  Google Scholar 

  35. Park, J., Keller, G.-A., and Ferrara, N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. 1993. Mol. Biol. Cell 4: 1317–1326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Houck, K.A., Leung, D.W., Rowland, A.M., Winer, J., and Ferrara, N. 1992. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J. Biol. Chem. 267: 26031–26037.

    CAS  PubMed  Google Scholar 

  37. Keck, P.J., Hauser, S.D., Krivi, G., Sanzo, K., Warren, T., Feder, J., and Connolly, D.T. 1989. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246: 1309–1312.

    Article  CAS  PubMed  Google Scholar 

  38. Plouët, J., Schiling, J., and Gospodarowicz, D. 1989. Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT-20 cells. EMBO J. 8: 3801–3806.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wilting, J., Christ, B., and Welch, H.A. 1992. The effects of growth factors on the day 13 chorioallantoic membrane (CAM): a study of VEGF165 and PDGF-BB. Anat. Embryol. 186: 251–257.

    Article  CAS  Google Scholar 

  40. Klagsbrun, M. and D'Amore, P.A. 1991. Regulators of angiogenesis. Annu. Rev. Physiol. 53: 217–239.

    Article  CAS  PubMed  Google Scholar 

  41. Kim, K.J., Li, B., Winer, J., Armanini, M., Gillett, N., Phillips, H.S., et al. 1993. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362: 841–844.

    Article  CAS  PubMed  Google Scholar 

  42. Kondo, S., Asano, M., and Suzuki, H. 1993. Significance of vascular endothelial growth factor/vascular permeability factor for solid tumor growth, and its inhibition by the antibody. Biochem. Biophys. Res. Commun. 194: 1234–1241.

    Article  CAS  PubMed  Google Scholar 

  43. Kondo, S., Asano, M., Matsuo, K., Ohmori, I., and Suzuki, H. 1994. Vascular endothelial growth factor/vascular permeability factor is detectable in the sera of tumor-bearing mice and cancer patients. Biochimica et Biophysica Acta 1221: 211–214.

    Article  CAS  PubMed  Google Scholar 

  44. Yeo, K.-T., Wang, H.H., Nagy, J.A., Sioussat, T.M., Ledbetter, S.R., Hoogewerf, A.J., et al. 1993. Vascular permeability factor (vascular endothelial growth factor) in guinea pig and human tumor inflammatory effusions. Cancer Research 53: 2912–2918.

    CAS  PubMed  Google Scholar 

  45. Pieken, W.A., Olsen, D.B., Benseler, F., Aurup, H., and Eckstein, F. 1991. Kinetic characterization of ribonuclease-resistant 2′-modified hammerhead ribozymes. Science 253: 314–317.

    Article  CAS  PubMed  Google Scholar 

  46. Jellinek, D., Green, L.S., Bell, C., Lynott, C.K., Gill, N., Vargeese, C., et al. 1995. Potent 2′-amino-2′-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. Biochemistry 34: 11363–11372.

    Article  CAS  PubMed  Google Scholar 

  47. Green, L.S., Jellinek, D., Bell, C., Beebe, L.A., Feistner, B.D., Gill, S.C., Jucker, F.M., and Janjic, N. 1995. Nuclease resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. Chemistry and Biology 2: 683–695.

    Article  CAS  PubMed  Google Scholar 

  48. Jensen, K.B., Atkinson, B.L., Willis, M.C., Koch, T.H., and Gold, L. 1995. Using in vitro selection to direct the covalent attachment of human immunodeficiency virus type 1 Rev protein to high-affinity RNA ligands. Proc. Natl. Acad. Sci. USA 92: 12220–12224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drolet, D., Moon-McDermott, L. & Romig, T. An enzyme-linked oligonucleotide assay. Nat Biotechnol 14, 1021–1025 (1996). https://doi.org/10.1038/nbt0896-1021

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0896-1021

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing