Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

pH-sensitive, cationic liposomes: A new synthetic virus-like vector

Abstract

We describe the use of cationic, pH-sensitive liposomes to mediate the efficient transfer of DNA into a variety of cells in culture. Cationic lipids, containing an amine with a pK within the physiologic range of 4.5 to 8, were synthesized and incorporated with dioleoylphosphatidylethanolamine into liposomes. Acid conditions promoted DNA-binding, DNA-incorporation, and DNA-induced fusion by these cationic, pH-sensitive liposomes. Transfection efficiency in cultured cells was dependent on endosomal acidification in a manner akin to acidic-induced endosomal release of viruses. These liposomes constitute a promising new class of reagents for gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hodgson, C.P. 1995. The vector void in gene therapy. Bio/Technology 13: 222–225.

    CAS  Google Scholar 

  2. Marshall, E. 1995. Gene therapy's growing pains. Science 269: 1050–1055.

    Article  CAS  PubMed  Google Scholar 

  3. Wolff, J.A. 1994. Gene Therapeutics: Methods and Applications of Direct Gene Transfer. Wolff, J.A. (ed.). Birkhäuser Boston, Cambridge, MA.

    Book  Google Scholar 

  4. Felgner, P.L., et al. 1987 Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84: 7413–7417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kabanov, A.V. and Kabanov, V.A. 1995. DNA complexes with polycations for the delivery of genetic material into cells. Bioconjugate Chem. 6: 7–20.

    Article  CAS  Google Scholar 

  6. Wolff, J.A. and Budker, V. Cationic lipid-mediated gene transfer. Cancer Gene Ther. In press.

  7. Dowty, M.E., Williams, P., Zhang, G., and Wolff, J.A. 1995. Plasmid DNA entry into postmitotic nuclei of primary rat myotubes. Proc. Natl. Acad. Sci. USA 92: 4572–4576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Frese, J., Wu, C.H. and Wu, G.Y. 1994. Targeting of genes to the liver with glycoprotein carriers. Advanced Drug Delivery Reviews 14: 137–152.

    Article  CAS  Google Scholar 

  9. Kichler, A., et al. 1995. Efficient gene delivery with neutral complexes of lipo-spermine and thiol-reactive phospholipids. Biochem. Biophys. Res. Comm. 209: 444–450.

    Article  CAS  PubMed  Google Scholar 

  10. Perales, J.C., Ferkol, T., Molas, M., and Hanson, R.W. 1994. An evaluation of receptor-mediated gene transfer using synthetic DNA-ligand complexes. Eur. J. Biochem. 226: 255–266.

    Article  CAS  PubMed  Google Scholar 

  11. Feigner, P.L. and Ringold, G.M. 1989. Cationic liposome-mediated transfection. Nature 337: 387–388.

    Article  Google Scholar 

  12. Holmen, S.L., Vandrocklin, M.W., Eversole, R.R., Stapleton, S.R., and Ginsberg, L.C. 1995. Efficient lipid-mediated transfection of DNA into primary rat hepatocytes. In Vitro Cell. Dev. Biol. 30: 347–351.

    Article  Google Scholar 

  13. Zhou, X. and Huang, L. 1994. DNA transfection mediated by cationic liposomes containing lipopolylysine: Characterization and mechanism of action. Biochim. Biophys. Acta 1195–1203.

  14. Legendre, J. and Szoka, F. 1992. Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: Comparison with cationic liposomes. Pharmaceut. Res. 9: 1235–1242.

    Article  CAS  Google Scholar 

  15. Kamata, H., Yagisawa, H., Takahashi, S., and Hirata, H. 1994. Amphiphilic peptides enhance the efficiency of liposome-mediated DNA transfection. Nucleic Acids Res. 22: 536–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wagner, E., Curiel, D., and Cotten, M. 1994. Delivery of drugs, proteins and genes into cells using transferrin as a ligand for receptor-mediated endocytosis. Advance Drug Delivery Reviews 14: 113–135.

    Article  CAS  Google Scholar 

  17. Chernomordik, L., Kozlov, M.M., and Zimmerberg, J. 1995. Lipids in biological membrane fusion. J. Membrane Biol. 146: 114.

    Article  Google Scholar 

  18. Litzinger, D.C. and Huang, L. 1992. Phosphatidylethanolamine liposomes: drug delivery, gene transfer and immunodiagnostic applications. Biochem. Biophys. Acta 1113: 201–227.

    CAS  PubMed  Google Scholar 

  19. Duzgunes, N., Straubinger, R.M., Baldwin, P.A., and Papahadjopoulos, D. 1991. pH-sensitive liposomes, pp. 713–730 in Membrane Fusion. Wilschut, J. and Hoekstra, D. (eds.). Marcel Deker Inc., New York.

    Google Scholar 

  20. Horwitz, B.A., Shintizky, M., Kreutz, W., and Yatvin, M.B. 1980. pH-sensitive liposomes: possible clinical implications. Science 210: 1253–1255.

    Article  PubMed  Google Scholar 

  21. Wang, C.-Y. and Huang, L. 1989. Highly efficient DNA delivery mediated by pH-sensitive immunoliposomes. Biochem. 28: 9508–9514.

    Article  CAS  Google Scholar 

  22. Cudd, A. and Nicolau, C. 1984. pp. 207–221 in Liposome Technology. Gregoriadis, G. (ed.), CRC Press Inc., Boca Raton, Florida.

    Google Scholar 

  23. Duzgunes, N. and Goldstein, J.A. 1989. Fusion of liposomes containing a novel cationic lipid, N-[2,3(dioleyloxy)propyl]-N,N,N-trimethylammonium: induction by multivalent anions and asymmetric fusion with acidic phospholipid. Biochem. 28: 9179–9184.

    Article  CAS  Google Scholar 

  24. Gershon, H., Ghirlando, R., Guttman, S.B. and Minsky, A. 1993. Mode of formation and structural features of DNA-cationic liposome complexes used for transfection. Biochem. 32: 7143–7151.

    Article  CAS  Google Scholar 

  25. Wrobel, I. and Collins, D. 1995. Fusion of cationic liposomes with mammalian cells occurs after endocytosis. Biochim. Biophys. Acta 1235: 296–304.

    Article  PubMed  Google Scholar 

  26. Mellman, I., Fuchs, R., and Helenius, A. 1986. Acidification of the endocytic and exocytic pathways. Ann. Rev. Biochem. 55: 663–700.

    Article  CAS  PubMed  Google Scholar 

  27. Dean, R.T., Jessup, W., and Roberts, C.R. 1984. Effects of exogenous amines on mammalian cells, with particular reference to membrane flow. Biochem. J. 217: 27–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Farhood, H., Serbina, N., and Huang, L. 1995. The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim. Biophys. Acta 1235: 289–295.

    Article  PubMed  Google Scholar 

  29. Bowman, E.J., Siebers, A., and Altendorf, K. 1988. Bafilomycins: A class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc. Natl. Acad. Sci. USA 85: 7972–7976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Umata, T., Moriyama, Y., Futai, M., and Mekada, E. 1990. The cytotoxic action of diptheria toxin and its degradation in intact Vero cells are inhibited by Bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase. J. Biol. Chem. 265: 21940–21945.

    CAS  PubMed  Google Scholar 

  31. Yoshimori, T., Yamamoto, A., Moriyama, Y., Futai, M., and Tashiro, Y. 1991. Bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J. Biol. Chem. 266: 17707–17712.

    CAS  PubMed  Google Scholar 

  32. Lippincott-Schwartz, J., et al. 1991. Brefeldin A's effects on endosomes, lyposomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell 67: 601–616.

    Article  CAS  PubMed  Google Scholar 

  33. Wood, S.A., Park, J.E., and Brown, W.J. 1991. Brefeldin A causes a microtubule-mediated fusion of the trans-golgi network and early endosomes. Cell 67: 591–600.

    Article  CAS  PubMed  Google Scholar 

  34. Lanzrein, M., Schlegel, A., and Kempf, C. 1994. Entry and uncoating of enveloped viruses. Biochemical J. 302: 313–320.

    Article  CAS  Google Scholar 

  35. Guinea, R. and Carrasco, L. 1995. Requirement for vacuolar proton-ATPase activity during entry of influenza virus into cells. J. Virol. 69: 2306–2312.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Leventis, R. and Silvius, J.R. 1990. Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles. Biochim. Biophys. Acta 1023: 124–132.

    Article  CAS  PubMed  Google Scholar 

  37. Beigel, M., Keren-Zur, M., Laster, Y., and Loyter, A. 1988. Poly(aspartic acid)-dependent fusion of liposomes bearing the quaternary ammonium detergent [[[(1,1,3,3-tetramethylbutyl)cresoxy] ethoxy] ethyl] dimethylbenzylammonium hydroxide. Biochem. 27: 660–666.

    Article  CAS  Google Scholar 

  38. Struck, D.K., Hoekstra, D., and Pagano, R.E. 1981. Use of resonance energy transfer to monitor membrane fusion. Biochem. 20: 4093–4099.

    Article  CAS  Google Scholar 

  39. Danko, I., et al. 1994. Pharmacological enhancement of in vivo foreign gene expression in muscle. Gene Ther. 1: 114–121.

    CAS  PubMed  Google Scholar 

  40. Wolff, J.A., et al. 1990. Direct gene transfer into mouse muscle in vivo. Science 247: 1465–1468.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budker, V., Gurevich, V., Hagstrom, J. et al. pH-sensitive, cationic liposomes: A new synthetic virus-like vector. Nat Biotechnol 14, 760–764 (1996). https://doi.org/10.1038/nbt0696-760

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0696-760

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing