Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Intercellular delivery of functional p53 by the herpesvirus protein VP22

Abstract

The herpes simplex virus type 1 (HSV-1) virion protein VP22 exhibits the remarkable property of intercellular trafficking whereby the protein spreads from the cell in which it is synthesized to many surrounding cells. In addition to having implications for protein trafficking mechanisms, this function of VP22 might be exploited to overcome a major hurdle in gene therapy, i.e., efficient delivery of genes and gene products. We show that chimeric polypeptides, consisting of VP22 linked to the entire p53 protein, retain their ability to spread between cells and accumulate in recipient cell nuclei. Furthermore the p53–VP22 chimeric protein efficiently induces apoptosis in p53 negative human osteosarcoma cells resulting in a widespread cytotoxic effect. The intercellular delivery of functional p53–VP22 fusion protein is likely to prove beneficial in therapeutic strategies based on restoration of p53 function. These results, demonstrating intracellular transport of large functional proteins, indicate that VP22 delivery may have applications in gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Verma, I. and Somia, N. 1997. Gene therapy-problems, promises and prospects. Nature 389: 239–242.

    Article  CAS  PubMed  Google Scholar 

  2. Elliott, G. and O'Hare, P. 1997. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88: 223–233.

    Article  CAS  PubMed  Google Scholar 

  3. Levine, A.J. 1997. P53, the cellular gatekeeper for growth and division. Cell 88: 323–331.

    Article  CAS  PubMed  Google Scholar 

  4. Diller, L., Kassel, J., Nelson, C.E., Gryka, M.A., Litwak, G., Gebhardt, M. et al. 1990. P53 functions as a cell cycle control protein in osteosarcomas. Mol. Cell Biol. 10: 5772–5781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pientenpol, J.A. 1994. Sequence specific transcriptional transactivation is essential for growth suppression by p53. Proc. Natl. Acad. Sci. USA 91: 1998–2002.

    Article  Google Scholar 

  6. Baker, S.J., Markowitz, S., Fearon, E.R., Willson, J.K.V. and Vogelstein, B. 1990. Suppression of human colorectal carcinoma cell growth by wild type p53. Science 249: 912–915.

    Article  CAS  PubMed  Google Scholar 

  7. Hamada, K., Alemany, R., Zhang, W.-W., Hittelman, W.N., Lotan, R., Roth, J.A. and Mitchell, M.F. 1996. Adenovirus-mediated transfer of a wild type p53 gene and induction of apoptosis in cervical cancer. Cancer Res. 56: 3047–3054.

    CAS  PubMed  Google Scholar 

  8. Nielsen, L.L., Dell, J., Maxwell, E., Armstrong, L., Maneval, D. and Catino, J.J. 1997. Efficacy of p53 adenovirus mediated gene therapy against human breast cancer xenografts. Cancer Gene Ther. 4: 129–138.

    CAS  PubMed  Google Scholar 

  9. Xu, M., Kumar, X.M., Srinivas, S., Detolla, L.J., Yu, S.F., Stass, S.A. and Mixson, A.J. 1997. Parental gene therapy with p53 inhibits human breast cancer tumors in vivo through a bystander effect without evidence of toxicity. Hum. Gene Ther. 8: 177–185.

    Article  CAS  PubMed  Google Scholar 

  10. Roth, J.A. 1996. Retrovirus-mediated wild type p53 gene transfer to tumors of patients with lung cancer. Nat. Med. 2: 985–991.

    Article  CAS  PubMed  Google Scholar 

  11. Cai, D.W. 1993. Stable expression of the wild type p53 gene in human lung cancer cells after retrovirus-mediated gene transfer. Hum. Gene Ther. 4: 617–624.

    Article  CAS  PubMed  Google Scholar 

  12. Sandig, V, Brand, K., Herwig, S., Lukas, J., Bartek, J. and Strauss, S. 1997. Adenovirally transferred p16 and p53 genes cooperate to induce apoptotic tumor death. Nat. Med. 3: 313–319.

    Article  CAS  PubMed  Google Scholar 

  13. Qazilbash, M.H., Xiao, X., Seth, P., Cowan, K.H. and Walsh, C.E. 1997. Cancer gene therapy using a novel adeno-associated virus vector expressing human wild type p53. Gene Ther. 4: 675–682.

    Article  CAS  PubMed  Google Scholar 

  14. Mesnil, M., Piccoli, C., Tiraby, G., Willecke, K. and Yamasaki, H. 1996. Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc. Natl. Acad. Sci. USA 93: 1831–1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elliott, G.D. and Meredith, D. 1994. The herpes simplex virus type 1 tegument protein VP22 is encoded by gene UL49. J. Gen. Virol. 73: 723–726.

    Article  Google Scholar 

  16. Leslie, J., Rixon, F., McLauchlan, J. 1997. Overexpression of the herpes simplex virus type 1 tegument protein VP22 increases its incorporation into virus particles. Virology 220: 60–68.

    Article  Google Scholar 

  17. McLauchlan, J., Liefkins, K. and Stow, N.D. 1994. The herpes simplex virus type 1 UL37 gene product is a component of virus particles. J. Gen. Virol. 75: 2047–2052.

    Article  CAS  PubMed  Google Scholar 

  18. Harlow, E., Crawford, L.V., Pirn, D.C. and Williamson, N.M. 1981. Monoclonal antibodies specific for simian virus 40 tumor antigens. J. Virol. 39: 861–869.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter O'Hare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phelan, A., Elliott, G. & O'Hare, P. Intercellular delivery of functional p53 by the herpesvirus protein VP22. Nat Biotechnol 16, 440–443 (1998). https://doi.org/10.1038/nbt0598-440

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0598-440

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing