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Abstract
The purpose of this study was to develop a method of classifying cancers to specific diagnostic
categories based on their gene expression signatures using artificial neural networks (ANNs). We
trained the ANNs using the small, round blue-cell tumors (SRBCTs) as a model. These cancers belong
to four distinct diagnostic categories and often present diagnostic dilemmas in clinical practice. The
ANNs correctly classified all samples and identified the genes most relevant to the classification.
Expression of several of these genes has been reported in SRBCTs, but most have not been associated
with these cancers. To test the ability of the trained ANN models to recognize SRBCTs, we analyzed
additional blinded samples that were not previously used for the training procedure, and correctly
classified them in all cases. This study demonstrates the potential applications of these methods for
tumor diagnosis and the identification of candidate targets for therapy.

The small, round blue cell tumors (SRBCTs) of childhood, which include neuroblastoma (NB),
rhabdomyosarcoma (RMS), non-Hodgkin lymphoma (NHL) and the Ewing family of tumors
(EWS), are so named because of their similar appearance on routine histology1. However,
accurate diagnosis of SRBCTs is essential because the treatment options, responses to therapy
and prognoses vary widely depending on the diagnosis. As their name implies, these cancers
are difficult to distinguish by light microscopy, and currently no single test can precisely
distinguish these cancers. In clinical practice, several techniques are used for diagnosis,
including immunohistochemistry2, cytogenetics, interphase fluorescence in situ
hybridization3 and reverse transcription (RT)-PCR (ref. 4). Immunohistochemistry allows the
detection of protein expression, but it can only examine one protein at a time. Molecular
techniques such as RT-PCR are used increasingly for diagnostic confirmation following the
discovery of tumor-specific translocations such as EWS-FLI1; t(11;22)(q24;q12) in EWS, and
the PAX3-FKHR; t(2;13)(q35;q14) in alveolar rhabdomyosarcoma1 (ARMS). However,
molecular markers do not always provide a definitive diagnosis, as on occasion there is failure
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to detect the classical translocations, due to either technical difficulties or the presence of
variant translocations.

Gene-expression profiling using cDNA microarrays permits a simultaneous analysis of
multiple markers, and has been used to categorize cancers into subgroups5–8. However, despite
the many statistical techniques to analyze gene-expression data, none so far has been rigorously
tested for their ability to accurately distinguish cancers belonging to several diagnostic
categories.

Artificial neural networks (ANNs) are computer-based algorithms which are modeled on the
structure and behavior of neurons in the human brain and can be trained to recognize and
categorize complex patterns9. Pattern recognition is achieved by adjusting parameters of the
ANN by a process of error minimization through learning from experience. They can be
calibrated using any type of input data, such as gene-expression levels generated by cDNA
microarrays, and the output can be grouped into any given number of categories. ANNs have
been recently applied to clinical problems such as diagnosing myocardial infarcts10 and
arrhythmias from electrocardiograms11 and interpreting radiographs and magnetic resonance
images12,13. Here we applied ANNs to decipher gene-expression signatures of SRBCTs and
used them for diagnostic classification.

Calibration and validation of the ANN models
To calibrate ANN models to recognize cancers in each of the four SRBCT categories, we used
gene-expression data from cDNA microarrays containing 6567 genes. The 63 training samples
(see Supplemental Table A) included both tumor biopsy material (13 EWS and 10 RMS) and
cell lines (10 EWS, 10 RMS, 12 NB and 8 Burkitt lymphomas (BL; a subset of NHL)). For
two samples, ST486 (BL-C2 and C4) and GICAN (NB-C2 and C7), we performed two
independent microarray experiments to test the reproducibility of the experiments and these
were subsequently treated as separate samples. Filtering for a minimal level of expression
reduced the number of genes to 2308 (Fig. 1a). Principal component analysis (PCA) further
reduced the dimensionality, and we found that using the 10 dominant PCA components per
sample as inputs and four outputs (EWS, RMS, NB or BL) produced well-calibrated ANN
models. These 10 dominant components contained 63% of the variance in the data matrix. The
remaining PCA components contained variance unrelated to separating the four cancers. The
three-fold cross-validation procedure (see Methods) produced a total of 3750 ANN models,
and the training and validation was successful (Fig. 1b). In addition, there was no sign of ‘over-
training’ of the models, as would be shown by a rise in the summed square error for the
validation set with increasing training iterations or ‘epochs’ (Fig. 1b). Using these ANN
models, all of the 63 training samples were correctly assigned/classified to their respective
categories, having received the highest committee vote (average output) for that category.

Optimization of genes utilized for classification
We next determined the contribution of each gene to the classification by the ANN models by
measuring the sensitivity of the classification to a change in the expression level of each gene,
using the 3750 previously calibrated models (see Supplementary Methods). In this way, we
ranked the genes according to their significance for the classification. We then determined the
classification error rate using increasing numbers of these ranked genes. The classification
error rate minimized to 0% at 96 genes (Fig. 1c). The 10 dominant PCA components for these
96 genes contained 79% of the variance in the data matrix. Using only these 96 genes, we
recalibrated the ANN models (Fig. 1a) and again correctly classified all 63 samples (Fig. 2).
Moreover, multidimensional scaling (MDS) analysis5 using these 96 genes clearly separated
the four cancer types (Fig. 3a). The top 96 discriminators represented 93 unique genes (Fig.
3b), as IGF2 was represented by three independent clones and MYC by two. Of the 96, 13 were
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anonymous expressed sequence tags (ESTs); 16 genes were specifically expressed in EWS,
20 in RMS, 15 in NB and 10 in BL. Twelve genes were good discriminators on the basis of
lack of expression in BL and variable expression in the other three types. One gene (EST; Clone
ID 295985) discriminated EWS from other cancer types by its lack of expression in this cancer.
The remainder of the genes was expressed in two of the four cancer types. To our knowledge,
of the 61 genes that were specifically expressed in a cancer type, 41 have not been previously
reported as associated with these diseases.

Diagnostic classification and hierarchical clustering
We then tested the diagnostic classification capabilities of these ANN models on a set of 25
blinded test samples. A sample is classified to a diagnostic category if it receives the highest
vote for that category and because this classifier has only four possible outputs, all samples
will be classified to one of the four categories. We therefore established a diagnostic
classification method based on a statistical cutoff to enable us to reject a diagnosis of a sample
classified to a given category. If a sample falls outside the 95th percentile of the probability
distribution of distances between samples and their ideal output (for example, for EWS it is
EWS = 1, RMS = NB = BL = 0), its diagnosis is rejected (see Methods).

The test samples contained both tumors (5 EWS, 5 RMS and 4 NB) and cell lines (1 EWS, 2
NB and 3 BL). We also tested the ability of these models to reject a diagnosis on 5 non-SRBCTs
(consisting of 2 normal muscle tissues (Tests 9 and 13) and 3 cell lines including an
undifferentiated sarcoma (Test 5), osteosarcoma (Test 3) and a prostate carcinoma (Test 11)).
Using the 3750 ANN models calibrated with the 96 genes, we correctly classified 100% of the
20 SRBCT tests (Table 1 & Fig. 2) as well as all 63 training samples (see Supplemental Table
A). Three of these samples, Test 10, Test 20 and EWS-T13 were correctly assigned to their
categories (RMS, EWS and EWS respectively), having received the highest vote for their
respective categories. However, their distance from a perfect vote was greater than the expected
95th percentile distance (Fig. 2); therefore, we could not confidently diagnose them by this
criterion. All of the five non-SRBCT samples were excluded from any of the four diagnostic
categories, since they fell outside the 95th percentiles. Using these criteria for all 88 samples,
the sensitivity of the ANN models for diagnostic classification was 93% for EWS, 96% for
RMS and 100% for both NB and BL. The specificity was 100% for all four diagnostic
categories. Also, hierarchical clustering14 using the 96 genes, identified from the ANN models,
correctly clustered all 20 of the test samples (Fig. 3c). Moreover, the two pairs of samples that
were derived from two cell lines, BL-C2 and C4 (ST486) and NB-C2 and C7 (GICAN), were
adjacent to one another in the same cluster.

Expression of FGFR4 on SRBCT tissue array
To confirm the effectiveness of the ANN models to identify genes that show preferential high
expression in specific cancer types at the protein level, we performed immunohistochemistry
on SRBCT tissue arrays for the expression of fibroblast growth factor receptor 4 (FGFR4).
This tyrosine kinase receptor is expressed during myogenesis15 but not in adult muscle, and
is of interest because of its potential role in tumor growth16 and in prevention of terminal
differentiation in muscle17. Moderate to strong cytoplasmic immunostaining for FGFR4 was
seen in all 26 RMSs tested (17 alveolar, 9 embryonal). We also observed generally weaker
staining in EWS and NHL in agreement with the microarray results, except for one case of
anaplastic large cell lymphoma that was strongly positive (data not shown).

Discussion
Tumors are currently diagnosed by histology and immunohistochemistry based on their
morphology and protein expression, respectively. However, poorly differentiated cancers can
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be difficult to diagnose by routine histopathology. In addition, the histological appearance of
a tumor cannot reveal the underlying genetic aberrations or biological processes that contribute
to the malignant process. Here we developed a method of diagnostic classification of cancers
from their gene-expression signatures and identified the genes that contributed to this
classification.

We used the SRBCTs of childhood as a model because these cancers occasionally present
diagnostic difficulties. For example, Ewing sarcoma is diagnosed by immunohistochemical
evidence of MIC2 expression18 and lack of expression of the leukocyte common antigen CD45
(excluding lymphoma), muscle-specific actin or myogenin (excluding RMS)19. However,
reliance on detection of MIC2 alone can lead to incorrect diagnosis as MIC2 expression occurs
occasionally in other tumor types including RMS and NHL (ref. 1).

Monitoring global gene-expression levels by cDNA microarrays provides an additional tool
for elucidating tumor biology as well as the potential for molecular diagnostic classification
of cancer5–8,20–22. Currently, classification and clustering tools using gene-expression data
have not been rigorously tested for diagnostic classification of more than two categories. Other
approaches that share the parametric nature of ANNs and have been utilized to classify gene-
expression profiles include Support Vector Machines23. Thus far, these other methods have
not been fully explored to extract the genes or features that are most important for the
classification performance and which also will be of interest to cancer biologists24.

Here we have approached this problem using ANN-based models. We calibrated ANN models
on the expression profiles of 63 SRBCTs of 4 diagnostic categories. Due to the limited amount
of training data and the high performance achieved, we limited our analysis to linear (that is,
no hidden layers) ANN models. Although other linear methods may perform as well, our
method can easily accommodate nonlinear features of expression data if required. To
compensate for heterogeneity within the tumor samples (which contain both malignant and
stromal cells) and for possible artifacts due to growth of cell lines in tissue culture, we used
both tumor samples (n = 23) and cell lines (n = 40). Data from these samples is complementary,
because tumor tissue, though complex, provides a gene-expression pattern representative of
tumor growth in vivo, while cell lines contain a uniform malignant population without stromal
contamination. Despite using only NB cell lines for calibrating the ANN models, all four NB
tumors among the test samples were correctly diagnosed with high confidence. This not only
demonstrates the high similarity of NB cell lines to the tumors of origin, but also validates the
use of cell lines for ANN calibration. The calibrated ANN models accurately classified all 63
training SRBCTs and showed no evidence of over-training, demonstrating the robustness of
this technique.

A potential difficulty with ANN-based pattern recognition models is elucidating causal links
from the output to the original input data. To solve this problem and to identify the most
significant genes, we calculated the sensitivity of the classification to a change in the expression
level of each gene. We produced a list of genes ranked by their significance to the classification.
Using this list, we established that the top 96 genes reduced the misclassifications to zero,
which opens the potential for cost effective fabrication of SRBCT subarrays in diagnostic use.
When we tested the ANN models calibrated using the 96 genes on 25 blinded samples, we
were able to correctly classify all 20 samples of SRBCTs and reject the 5 non-SRBCTs. This
supports the potential use of these methods as an adjunct to routine histological diagnosis.

Although ANN analysis leads to identification of genes specific for a cancer with implications
for biology and therapy, a strength of this method is that it does not require genes to be
exclusively associated with a single cancer type. This allows for classification based on
complex gene-expression patterns. For example, the top 96 discriminating genes included not
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only those that had high (61) or low levels (12 BL and 1 EWS) of expression in one particular
cancer, but also genes that were differentially expressed in two diagnostic categories as
compared to the remaining two. Of the 16 genes highly expressed only in EWS, two (MIC2
and GYG2) have been previously described18,25. MIC2 immunostaining is currently used to
diagnose EWS; however we find that although MIC2 detects EWS with high sensitivity, it
alone cannot be used to discriminate EWS as it was also expressed in several RMSs.

Our method identifies genes related to tumor histogenesis, but includes genes that may not
normally be expressed in the corresponding mature tissue. Of the 14 genes that have not yet
been reported to be highly expressed in EWS, 4 (TUBB5, ANXA1, NOE1 and GSTM5)26–29
were neural-specific genes—lending more credence to the proposed neural histogenesis of
EWS (ref. 30). Twenty genes were highly expressed only in RMS, including eight specific for
muscle tissue and five (FGFR4, IGF2, MYL4, ITGA7 and IGFBP5)15,31–34 related to
myogenesis. Among the latter, IGF2, MYL4 and IGFBP5 expression has been reported in RMS
(refs. 35,36), and only ITGA7 and IGFBP5 were found to be expressed in our two normal
muscle samples. Of the genes specifically expressed in a cancer type, 41 have not been
previously reported, including 7 ESTs with no current known function. All of these warrant
further study and might provide new insights into the biology of these cancers. For example,
FGFR4, a tyrosine kinase receptor that is expressed during myogenesis and prevents terminal
differentiation in myocytes15,17, was found to be highly expressed only in RMS and not in
normal muscle. The relatively strong differential expression of FGFR4 in RMS was confirmed
by immunostaining of tissue microarrays (data not shown). Although the high expression of
FGFR4 in most cases of RMS indicates that it may be relevant to the biology of this tumor, it
is also expressed in some other cancers37 and normal tissues38. This indicates that although
FGFR4 expression in RMS may be of biological and therapeutic interest, it is unlikely to be
applicable as a sole differential diagnostic marker for these tumors.

As the main purpose of this study was to optimize the classification of these cancers, we used
a stringent quality filter to include only the genes for which there were good measurements for
all samples. This may remove certain genes that are highly expressed in some cancers, but not
expressed in other cancers, or may appear not to be expressed because of an artifact in a
particular cDNA spot. However, we found that this quality filtration produced more robust
prediction models and led to the identification of a set of 96 genes highly relevant to these
cancers. Nonetheless, we expect that this list can be expanded by the use of more
comprehensive arrays and larger sample sets for training.

Here we developed a method of diagnostic classification of cancers from their gene expression
signatures using ANNs. We also identified in ranked order the genes that contributed to this
classification, and we were able to define a minimal set that can correctly classify our samples
into their diagnostic categories. Although we achieved high sensitivity and specificity for
diagnostic classification, we believe that with larger arrays and more samples it will be possible
to improve on the sensitivity of these models for purposes of diagnosis in clinical practice. To
our knowledge, this is the first application of ANN for diagnostic classification of cancer using
gene-expression data derived from cDNA microarrays. Future applications of these methods
will include studies to classify cancers according to stage and biological behavior in order to
predict prognosis and thereby direct therapy. We believe this offers an alternative and powerful
technique for the detection of gene-expression signatures, and the discovery of novel genes
that characterize a diagnostic subgroup may also identify new targets for therapy.
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Methods
Cell culture and tumor samples

The source and other information for the cell lines and tumor samples used in this study are
described in Supplemental Table A (for the training set) and Table 1 (for the test set). All the
original histological diagnoses were made at tertiary hospitals, which have reference diagnostic
laboratories with extensive experience in the diagnosis of pediatric cancers. Approximately
20% of all samples in each category were randomly selected, blinded and set aside for testing.
To augment this test set, we added 4 neuroblastoma tumors and 5 non-SRBCT samples (also
blinded to the authors performing the analysis). The EWSs had a spectrum of the expected
translocations, and the RMSs were a mixture of both ARMS containing the PAX3-FKHR
translocation and embryonal rhabdomyosarcoma (ERMS). The NBs contained both MYCN
amplified and single copy samples. The NHLs were cell lines derived from BL (see
Supplemental Table B for details of all samples). The conditions for cell cultures and the
methods for extracting RNA from cell lines were described5.

Microarray experiments
Preparation of glass cDNA microarrays, probe labeling, hybridization and image acquisition
were performed according to the standard NHGRI protocol (http://www.nhgri.nih.gov/DIR/
LCG /15K/HTML/protocol.html). Image analysis was performed using DeArray software39.
The cDNA clones were obtained from Research Genetics (Huntsville, Alabama) and were their
standard microarray set, which consisted of 3789 sequence-verified known genes and 2778
sequence-verified ESTs.

Data analysis
We filtered genes by requiring that a gene should have red intensity greater than 20 across all
experiments. The number of genes that passed this filter was 2308. Each slide was normalized
across all experiments such that the relative (or normalized) red intensity (RRI) for each gene
was defined as: RRI = mean intensity of that spot/mean intensity of filtered genes. The natural
logarithm (ln) of RRI was used as a measure of the expression levels. Hierarchical clustering
and MDS plots were performed as described5.

To allow for a supervised regression model with no over-training (when we have low number
of parameters as compared to the number of samples), the dimensionality of the samples was
reduced by PCA (ref. 40) using centralized ln(RRI) values as input. Thus each sample was
represented by 88 numbers, which are the results of projection of the gene expressions using
PCA eigenvectors. We used the 10 dominant PCA components for subsequent analysis. We
classified the training samples in the 4 categories using a 3-fold cross validation procedure:
the 63 training (labeled) samples were randomly shuffled and split into 3 equally sized groups
(see Fig. 1a). Each linear ANN model was then calibrated with the 10 PCA input variables
(normalized to centralized z-scores) using 2 of the groups, with the third group reserved for
testing predictions (validation). This procedure was repeated 3 times, each time with a different
group used for validation. The random shuffling was redone 1250 times and for each shuffling
we analyzed 3 ANN models. Thus, in total, each sample belonged to a validation set 1250
times, and 3750 ANN models were calibrated. For each diagnostic category (EWS, RMS, NB
or BL), each ANN model gave an output between 0 (not this category) and 1 (this category).
The 1250 outputs for each validation sample were used as a committee as follows. We
calculated the average of all the predicted outputs (a committee vote) and then a sample is
classified as a particular cancer if it receives the highest committee vote for that cancer. In
clinical settings, it is important to be able to reject a diagnostic classification including samples
not belonging to any of the four diagnoses. Therefore, to be able to reject classifications we
did as follows. A squared Euclidean distance was computed for each cancer type, between the

Khan et al. Page 6

Nat Med. Author manuscript; available in PMC 2005 November 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



committee vote for a sample and the ‘ideal’ output for that cancer type; normalized such that
it is unity between cancer types (see Supplemental Methods). Using the 1250 ANN models for
each validation sample we constructed for each cancer type an empirical probability
distribution for the distances. Using these distributions, samples are only diagnosed as a
specific cancer if they lie within the 95th percentile. All 3750 models were used to classify the
additional 25 test samples.

The sensitivity to the different genes is determined by the absolute value of the partial derivative
of the output with respect to the gene expressions, averaged over samples and ANN models
(see Supplemental Methods). A large sensitivity implies that changing the expression
influences the output significantly. In this way the genes can be ranked.
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Fig. 1.
The artificial neural network. a, Schematic illustration of the analysis process. The entire data-
set of all 88 experiments was first quality filtered (1) and then the dimensionality was further
reduced by principal component analysis (PCA) to 10 PCA projections (2), from the original
6567 expression values. Next, the 25 test experiments were set aside and the 63 training
experiments were randomly partitioned into 3 groups (3). One of these groups was reserved
for validation and the remaining 2 groups for calibration (4). ANN models were then calibrated
using for each sample the 10 PCA values as input and the cancer category as output (5). For
each model the calibration was optimized with 100 iterative cycles (epochs). This was repeated
using each of the 3 groups for validation (6). The samples were again randomly partitioned
and the entire training process repeated (7). For each selection of a validation group one model
was calibrated, resulting in a total of 3750 trained models. Once the models were calibrated
they were used to rank the genes according to their importance for the classification (8). The
entire process (2–7) was repeated using only top ranked genes (9). The 25 test experiments
were subsequently classified using all the calibrated models. b, Monitoring the calibration of
the models. The average classification error per sample (using a summed square error function)
is plotted during the training iterations (epochs) for both the training and the validation samples.
A pair of lines, purple (training) and gray (validation), represents one model. The decrease in
the classification errors with increasing epochs demonstrates the learning of the models to
distinguish these cancers. The results shown are for 200 different models, each corresponding
to a random partitioning of the data. All the models performed well for both training and
validation as demonstrated by the parallel decrease (with increasing epochs) of the average
summed square classification error per sample. In addition, there was no sign of over-training:
if the models begin to learn features in the training set, which are not present in the validation
set, this would result in an increase in the error for the validation at that point and the curves
would no longer remain parallel. c, Minimizing the number of genes. The average number of
misclassified samples for all 3750 models is plotted against increasing number of used genes.
The misclassifications minimized to zero using the 96 highest ranked genes.
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Fig. 2.
Classification and diagnosis of the samples. A sample is classified to a cancer category
according to its highest committee vote (average of all ANN outputs) and placed in the
corresponding plot. Plotted, for each sample, is the distance from its committee vote to the
ideal vote for that diagnostic category (for example, for EWS, it is EWS = 1, RMS = NB = BL
= 0). Thus a perfectly classified sample would be plotted with a distance of zero. Training
samples are displayed as squares and test samples as triangles. Non-SRBCT samples are
colored black. All SRBCT samples, including the 20 tests, were correctly classified. The
distance corresponding to the 95th percentile for the training samples is represented by a dashed
line, outside which the diagnosis of a sample is rejected. The diagnosis of all 5 non-SRBCT
test samples was rejected since they lie outside their respective dashed lines. Three of the
SRBCT samples (EWS-T13, TEST-10 and TEST-20) though correctly classified could not be
confidently diagnosed.
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Fig. 3.
Hierarchical clustering and multidimensional scaling analysis. The top 96 genes as ranked by
the ANN models were used for the analysis. a, Multidimensional scaling analysis. Shown here
are two projections of the MDS plot of the training samples. EWS are depicted as yellow circles,
RMS as red, BL as blue and NB as green. The samples clustered closely according to the 4
different cancer categories. b, Hierarchical clustering of the samples and genes. Each row
represents one of the 96 cDNA clones and each column a separate sample. A pseudo-colored
representation of the relative red intensity is shown such that a red color indicates high
expression and green color low expression, with scale shown below. On the right are the
IMAGE id., gene symbol, class in which the gene is highly expressed (see Supplementary
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Methods), and the ANN rank. *, genes that have not been reported to be associated with these
cancers. c, Enlargement of the hierarchical clustering dendrogram of the samples in b. All 63
training and the 20 test SRBCTs correctly clustered within their diagnostic categories. In both
cases where two samples were derived from the same cell line, BL-C2 & C4, and NB-C2 and
C7, each mapped adjacent to one another in the same cluster. The scale shows the Pearson
correlation coefficient used to construct the dendrogram. The Pearson correlation cutoff was
0.54, when the samples clustered into the four diagnostic categories.
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