Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Telomerized human microvasculature is functional in vivo

Abstract

Previously we showed the superior in vitro survival of human telomerase reverse transcriptase (hTERT)-transduced human endothelial cells (EC). Here we show that retroviral-mediated transduction of hTERT in human dermal microvascular EC (HDMEC) results in cell lines that form microvascular structures when subcutaneously implanted in severe combined immunodeficiency (SCID) mice. Anti-human type IV collagen basement membrane immunoreactivity and visualization of enhanced green fluorescent protein (eGFP)-labeled microvessels confirmed the human origin of these capillaries. No human vasculature was observed after implantation of HT1080 fibrosarcoma cells, 293 human embryonic kidney cells, or human skin fibroblasts. Intravascular red fluorescent microspheres injected into host circulation were found within green “telomerized” microvessels, indicating functional murine–human vessel anastamoses. Whereas primary HDMEC-derived vessel density decreased with time, telomerized HDMEC maintained durable vessels six weeks after xenografting. Modulation of implant vessel density by exposure to different angiogenic and angiostatic factors demonstrated the utility of this system for the study of human microvascular remodeling in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of telomerase activity and fluorescence signal of eGFP-labeled primary HDMEC and telomerized cells.
Figure 2: In vitro tubule formation in primary and telomerized HDMEC using 3D Matrigel.
Figure 3: In vivo tubule formation in SCID mice xenografted with HDMEC.
Figure 4: Specificity of HDMEC-GT at forming in vivo tubules in SCID mice.
Figure 5: Telomerized human microvessels communicate with host murine circulatory system.
Figure 6: Effect of pro- and anti-angiogenic factors on HDMEC-GT-derived microvessels in vivo.

Similar content being viewed by others

References

  1. L'Heureux, N., Paquet, S., Labbe, R., Germain, L. & Auger, F.A. A completely biological tissue-engineered human blood vessel. FASEB J. 12, 47–56 (1998).

    Article  CAS  Google Scholar 

  2. Nör, J., Joan, C., Mooney, D. & Polverini, P. Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am. J. Pathol. 154, 375–384 (1999).

    Article  Google Scholar 

  3. Schechner, J. et al. In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc. Natl. Acad. Sci USA 97, 9191–9196 (2000).

    Article  CAS  Google Scholar 

  4. Jain, R.K., Schlenger, K., Höckel, M. & Yuan, F. Quantitative angiogenesis assays: progress and problems. Nat. Med. 3, 1203–1208 (1997).

    Article  CAS  Google Scholar 

  5. Palmer, R., Ferrige, A. & Moncada, S. Nitric oxide release accounts for the biological activity of EDRF. Nature 327, 524–526 (1987).

    Article  CAS  Google Scholar 

  6. Pili, R. et al. Altered angiogenesis underlying age-dependent changes in tumor growth. J. Natl. Cancer Inst. 86, 1303–1314 (1994).

    Article  CAS  Google Scholar 

  7. Reed, M.J., Corsa, A.C., Kudravi, S.A., McCormick, R.S. & Arthur, W.T. A deficit in collagenase activity contributes to impaired migration of aged microvascular endothelial cells. J. Cell. Biochem. 77, 116–126 (2000).

    Article  CAS  Google Scholar 

  8. Rivard, A. et al. Age-dependent impairment of angiogenesis. Circulation 99, 111–120 (1999).

    Article  CAS  Google Scholar 

  9. Swift, M.E., Kleinman, H.K. & DiPietro, L.A. Impaired wound repair and delayed angiogenesis in aged mice. Lab. Invest. 79, 1479–1487 (1999).

    CAS  PubMed  Google Scholar 

  10. Whikehart, D.R., Register, S.J., Chang, Q. & Montgomery, B. Relationship of telomeres and p53 in aging bovine corneal endothelial cell cultures. Invest. Ophthalmol. Vis. Sci. 41, 1070–1075 (2000).

    CAS  PubMed  Google Scholar 

  11. Chang, E. & Harley, C. B. Telomere length and replicative aging in human vascular tissues. Proc. Natl. Acad. Sci USA 92, 11190–11194 (1995).

    Article  CAS  Google Scholar 

  12. Maier, J.A., Voulalas, P., Roeder, D. & Maciag, T. Extension of the life-span of human endothelial cells by an interleukin-1 alpha antisense oligomer. Science 249, 1570–1574 (1990).

    Article  CAS  Google Scholar 

  13. Watanabe, Y., Lee, S.W., Detmar, M., Ajioka, I. & Dvorak, H.F. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) delays and induces escape from senescence in human dermal microvascular endothelial cells. Oncogene 14, 2025–2032 (1997).

    Article  CAS  Google Scholar 

  14. Shelton, D.N., Chang, E., Whittier, P.S., Choi, D. & Funk, W.D. Microarray analysis of replicative senescence. Curr. Biol. 9, 939–945 (1999).

    Article  CAS  Google Scholar 

  15. Ades, E.W. et al. HMEC-1 Establishment of an immortalized human microvascular endothelial cell line. J. Invest. Dermatol. 99, 683–690 (1992).

    Article  CAS  Google Scholar 

  16. Dubois, N.A., Kolpack, L.C., Wang, R., Azizkhan, R.G. & Bautch, V.L. Isolation and characterization of an established endothelial cell line from transgenic mouse hemangiomas. Exp. Cell Res. 196, 302–313 (1991).

    Article  CAS  Google Scholar 

  17. Candal, F. J. et al. BMEC-1: a human bone marrow microvascular endothelial cell line with primary cell characteristics. Microvasc. Res. 52, 221–234 (1996).

    Article  CAS  Google Scholar 

  18. Fontijn, R. et al. Maintenance of vascular endothelial cell-specific properties after immortalization with an amphotrophic replication-deficient retrovirus containing human papilloma virus 16 E6/E7 DNA. Exp. Cell Res. 216, 199–207 (1995).

    Article  CAS  Google Scholar 

  19. Cockerill, G.W., Meyer, G., Noack, L., Vadas, M.A. & Gamble, J.R. Characterization of a spontaneously transformed human endothelial cell line. Lab. Invest. 71, 497–509 (1994).

    CAS  PubMed  Google Scholar 

  20. Rhim, J.S. et al. A human vascular endothelial cell model to study angiogenesis and tumorigenesis. Carcinogenesis 19, 673–681 (1998).

    Article  CAS  Google Scholar 

  21. Yang, J. et al. Human endothelial cell life extension by telomerase expression. J. Biol. Chem. 274, 26141–26148 (1999).

    Article  CAS  Google Scholar 

  22. Maniotis, A.J. et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am. J. Pathol. 155, 739–752 (1999).

    Article  CAS  Google Scholar 

  23. Folberg, R., Hendrix, M.J. & Maniotis, A.J. Vasculogenic mimicry and tumor angiogenesis. Am. J. Pathol. 156, 361–381(2000).

    Article  CAS  Google Scholar 

  24. Capogrossi, M. & Passaniti, A. An in vivo angiogenesis assay to study positive and negative regulators of neovascularization. In Vascular disease: molecular biology and gene therapy protocols. Methods Mol. Med. (ed. Baker, A.H.) 367–384 (Humana Press, Totowa, NJ; 1999).

    Chapter  Google Scholar 

  25. Shay, J.W. & Wright, W.E. The use of telomerized cells for tissue engineering. Nat. Biotechnol. 18, 22–23 (2000).

    Article  CAS  Google Scholar 

  26. Thomas, M., Yang, L. & Hornsby, P.J. Formation of functional tissue from transplanted adrenocortical cells expressing telomerase reverse transcriptase. Nat. Biotechnol. 18, 39–42 (2000).

    Article  CAS  Google Scholar 

  27. Jiang, X. et al. Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat. Genet. 21, 111–114 (1999).

    Article  CAS  Google Scholar 

  28. Morales, C. et al. Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat. Genet. 21, 115–118 (1999).

    Article  CAS  Google Scholar 

  29. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6, 389–395 (2000).

    Article  CAS  Google Scholar 

  30. Helmlinger, G., Endo, M., Ferrara, N., Hlatky, L. & Jain, R.K. Growth factors: formation of endothelial cell networks. Nature 405, 139–141 (2000).

    Article  CAS  Google Scholar 

  31. Risau, W. Mechanisms of angiogenesis. Nature 386, 671–674 (1997).

    Article  CAS  Google Scholar 

  32. Asahara T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

    Article  CAS  Google Scholar 

  33. Shi, Q. et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 92, 362–367 (1998).

    CAS  PubMed  Google Scholar 

  34. Takahashi, T. et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat. Med. 5, 434–438 (1999).

    Article  CAS  Google Scholar 

  35. Kalka, C. et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl. Acad. Sci USA 97, 3422–3427 (2000).

    Article  CAS  Google Scholar 

  36. Christofidou-Solomidou, M., Bridges, M., Murphy, G.F., Albelda, S.M. & DeLisser, H.M. Expression and function of endothelial cell alpha v integrin receptors in wound-induced human angiogenesis in human skin/SCID mice chimeras. Am. J. Pathol. 151, 975–983 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yuan, F. et al. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc. Natl. Acad. Sci USA 93, 14765–14770 (1996).

    Article  CAS  Google Scholar 

  38. Normand, J. & Karasek, M.A. A method for the isolation and serial propagation of keratinocytes, endothelial cells, and fibroblasts from a single punch biopsy of human skin. In Vitro Cell. Dev. Biol. Anim. 31, 447–455 (1995).

    Article  CAS  Google Scholar 

  39. Romero, L.I., Zhang, D.N., Herron, G.S. & Karasek, M.A. Interleukin-1 induces major phenotypic changes in human skin microvascular endothelial cells. J. Cell. Physiol. 173, 84–92 (1997).

    Article  CAS  Google Scholar 

  40. Kinsella, T.M. & Nolan, G.P. Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther. 7, 1405–1413 (1996).

    Article  CAS  Google Scholar 

  41. Passaniti, A. et al. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab. Invest. 67, 519–528 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Garry Nolan (Stanford University, Stanford, CA) provided the LZRS retroviral vector and the Phoenix packaging cell line. The LZRS-eGFP construct was provided by Helen Deng (Stanford University, Stanford, CA). Endostatin-specific IgG was a gift from Rupert Timpl (Max Planck Institute, Martinsreid, Germany). We thank Michel Prunieras for his advice and many helpful discussions. This work was supported by NIH PO-1 AR44012, the Carl J. Herzog Foundation, and the Dermatology Foundation. J. Yang received a research fellowship from Warner Lambert Consumer Healthcare through the Dermatology Foundation. The work by W.C.M. was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. W.C.M. was also supported in part by NIH AI22511. G.S.H. is a Terman Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Scott Herron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Nagavarapu, U., Relloma, K. et al. Telomerized human microvasculature is functional in vivo. Nat Biotechnol 19, 219–224 (2001). https://doi.org/10.1038/85655

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85655

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing