Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells

Abstract

The ability to track the distribution and differentiation of progenitor and stem cells by high-resolution in vivo imaging techniques would have significant clinical and research implications. We have developed a cell labeling approach using short HIV-Tat peptides to derivatize superparamagnetic nanoparticles. The particles are efficiently internalized into hematopoietic and neural progenitor cells in quantities up to 10–30 pg of superparamagnetic iron per cell. Iron incorporation did not affect cell viability, differentiation, or proliferation of CD34+ cells. Following intravenous injection into immunodeficient mice, 4% of magnetically CD34+ cells homed to bone marrow per gram of tissue, and single cells could be detected by magnetic resonance (MR) imaging in tissue samples. In addition, magnetically labeled cells that had homed to bone marrow could be recovered by magnetic separation columns. Localization and retrieval of cell populations in vivo enable detailed analysis of specific stem cell and organ interactions critical for advancing the therapeutic use of stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of triple-label CLIO-Tat.
Figure 2: Quantitative uptake of CLIO-Tat into different cell types.
Figure 3: (A) Confocal microscopy of CLIO-Tat-labeled CD34+ cell (left), propidium iodide-labeled nucleus (middle), and using Nomarski optics (right).
Figure 4: Effect of CLIO-Tat labeling on cell differentiation.
Figure 5: In vivo distribution.
Figure 6: MR imaging. Axial MR images of bone marrow samples obtained from mouse femurs.
Figure 7: In vivo recovery.

Similar content being viewed by others

References

  1. Hardy, C.L. The homing of hematopoietic stem cells to the bone marrow. Am. J. Med. Sci. 309, 260–266 (1995).

    Article  CAS  Google Scholar 

  2. Papayannopoulou, T. & Craddock, C. Homing and trafficking of hemopoietic progenitor cells. Acta Haematol. 97, 97–104 (1997).

    Article  CAS  Google Scholar 

  3. Frenette, P.S., Subbarao, S., Mazo, I.B., von Andrian, U.H. & Wagner, D.D. Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow. Proc. Natl. Acad. Sci. USA 95, 14423–14428 (1998).

    Article  CAS  Google Scholar 

  4. Wiesmann, A. & Spangrude, G.J. Marrow engraftment of hematopoietic stem and progenitor cells is independent of Galphai-coupled chemokine receptors . Exp. Hematol. 27, 946– 955 (1999).

    Article  CAS  Google Scholar 

  5. Peled, A. et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283, 845 –848 (1999).

    Article  CAS  Google Scholar 

  6. Zanjani, E.D., Flake, A.W., Almeida-Porada, G., Tran, N. & Papayannopoulou, T. Homing of human cells in the fetal sheep model: modulation by antibodies activating or inhibiting very late activation antigen-4- dependent function. Blood 94, 2515–2522 (1999).

    CAS  PubMed  Google Scholar 

  7. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis . Science 275, 964–967 (1997).

    Article  CAS  Google Scholar 

  8. Miyoshi, H., Smith, K.A, Mosier, D.E, Verma, I.M. & Torbett, B.E. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 283, 682–686 (1999).

    Article  CAS  Google Scholar 

  9. von Andrian, U.H. & M'Rini, C. In situ analysis of lymphocyte migration to lymph nodes. Cell Adhes. Commun. 6, 85–96 (1998).

    Article  CAS  Google Scholar 

  10. Menger, M.D. & Lehr, H.A. Scope and perspectives of intravital microscopy-bridge over from in vitro to in vivo. Immunol. Today 14, 519–522 ( 1993).

    Article  CAS  Google Scholar 

  11. Hendrikx, P.J., Martens, A.C.M., Hagenbeek, A., Heij, J.F. & Visser, J.W.M. Homing of fluorescently labeled murine hematopoietic stem cells. Exp. Hematol. 24, 129–140 (1996).

    CAS  PubMed  Google Scholar 

  12. Lanzkron, S.M., Collector, M.I. & Sharkis, S.J. Hematopoietic stem cell tracking in vivo: a comparison of short-term and long-term repopulating cells. Blood 93, 1916–1921 (1999).

    CAS  PubMed  Google Scholar 

  13. Choi, S., Tang, X. & Cory, D. Constant time imaging approaches to NMR microscopy. Int. J. Imaging Sci. Technol. 8, 263–276 (1997).

    Article  Google Scholar 

  14. Jacobs, R.E., Ahrens, E.T., Meade, T.J. & Fraser, S.E. Looking deeper into vertebrate development. Trends Cell Biol. 9, 73–76 (1999).

    Article  CAS  Google Scholar 

  15. Johnson, G.A. et al. Histology by magnetic resonance microscopy. Magn. Reson. Q. 9, 1–30 ( 1993).

    CAS  PubMed  Google Scholar 

  16. Safarik, I. & Safarikova, M. Use of magnetic techniques for the isolation of cells. J. Chromatogr. B 722, 33–53 (1999).

    Article  CAS  Google Scholar 

  17. Weissleder, R., Cheng, H., Bogdanova, A. & Bogdanov, A.J. Magnetically labeled cells can be detected by MR imaging. J. Magn. Reson. Imaging 7, 258–263 ( 1997).

    Article  CAS  Google Scholar 

  18. Schoepf, U., Marecos, E., Melder, R., Jain, R. & Weissleder, R. Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. BioTechniques 24, 642–651 (1998).

    Article  CAS  Google Scholar 

  19. Dodd, S.J. et al. Detection of single mammalian cells by high-resolution magnetic resonance imaging. Biophys. J. 76, 103– 109 (1999).

    Article  CAS  Google Scholar 

  20. Hawrylak, N. et al. Nuclear magnetic resonance (NMR) imaging of iron oxide-labeled neural transplants. Exp. Neurol. 121, 181 –192 (1993).

    Article  CAS  Google Scholar 

  21. Bulte, J., Zhang, S., Van Geldern, P., Duncan, I. & Frank, J. MR tracking of magnetically labeled glial cells. Radiol. Soc. North Am. 213, 225 (1999).

  22. Weissleder, R. et al. In vivo MR imaging of transgene expression. Nat. Med. 6, 351–354 ( 2000).

    Article  CAS  Google Scholar 

  23. Schwarze, S.R., Ho, A., Vocero-Akbani, A. & Dowdy, S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569– 1572 (1999).

    Article  CAS  Google Scholar 

  24. Fawell, S. et al. Tat-mediated delivery of heterologous proteins into cells . Proc. Natl. Acad. Sci. USA 91, 664– 668 (1994).

    Article  CAS  Google Scholar 

  25. Nagahara, H. et al. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat. Med. 4, 1449–1452 (1998).

    Article  CAS  Google Scholar 

  26. Josephson, L., Tung, C.H., Moore, A. & Weissleder, R. High-efficiency intracellular magnetic labeling with novel superparamagnetic Tat peptide conjugates . Bioconjug. Chem. 10, 186– 191 (1999).

    Article  CAS  Google Scholar 

  27. Derossi, D. et al. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J. Biol. Chem. 271, 18188–18193 (1996).

    Article  CAS  Google Scholar 

  28. Avrameas, A., Ternynck, T., Nato, F., Buttin, G. & Avrameas, S. Polyreactive anti-DNA monoclonal antibodies and a derived peptide as vectors for the intracytoplasmic and intranuclear translocation of macromolecules. Proc. Natl. Acad. Sci. USA 95, 5601–5606 (1998).

    Article  CAS  Google Scholar 

  29. Phelan, A., Elliott, G. & O'Hare, P. Intercellular delivery of functional p53 by the herpesvirus protein VP22. Nat. Biotechnol. 16, 440– 443 (1998).

    Article  CAS  Google Scholar 

  30. Mann, D.A. & Frankel, A.D. Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J. 10, 1733– 1739 (1991).

    Article  CAS  Google Scholar 

  31. Ensoli, B. et al. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J. Virol. 67, 277–287 ( 1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zandstra, P.W., Conneally, E., Petzer, A.L., Piret, J.M. & Eaves, C.J. Cytokine manipulation of primitive human hematopoietic cell self- renewal. Proc. Natl. Acad. Sci. USA 94, 4698–4703 ( 1997).

    Article  CAS  Google Scholar 

  33. Rogers, J.M., Jung, C.W., Lewis, J. & Groman, E.V. Use of USPIO-induced magnetic susceptibility artifacts to identify sentinel lymph nodes and lymphatic drainage patterns. Magn. Reson. Imaging 16, 917–923 (1998).

    Article  CAS  Google Scholar 

  34. Holt, R.W., Diaz, P.J., Duerk, J.L. & Bellon, E.M. MR susceptometry: an external-phantom method for measuring bulk susceptibility from field-echo phase reconstruction maps. J. Magn. Reson. Imaging 4, 809–818 (1994).

    Article  CAS  Google Scholar 

  35. Shen, T., Weissleder, R., Papisov, M., Bogdanov, A. & Brady, T. Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn. Reson. Med. 29, 599–604 (1993).

    Article  CAS  Google Scholar 

  36. Weissleder, R. et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity . American Journal of Roentgeneology 152, 167–173 (1989).

    Article  CAS  Google Scholar 

  37. Harisinghani, M.G. et al. MR lymphangiography using ultrasmall superparamagnetic iron oxide in patients with primary abdominal and pelvic malignancies. Am. J. Roentgenol. 172, 1347–1351 (1999).

    Article  CAS  Google Scholar 

  38. Lynch, W.P., Sharpe, A.H. & Snyder, E.Y. Neural stem cells as engraftable packaging lines can mediate gene delivery to microglia: evidence from studying retroviral env-related neurodegeneration. J. Virol. 73, 6841– 6851 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. E. Snyder for the kind gift of the neural C17.2 progenitor cells, Drs. N. Michaud and C. Lin for help with the confocal microscopy experiment, Dr. R. Bhorade for performing the uptake experiments in neural progenitor cells, Drs. A. Moore, S. Bredow, and A. Wall for technical assistance, and Dr. L. Garrido for performing some of the original MR imaging studies at 4.7 T. This work was supported in part by RO1 CA59649, RO1 CA46973, RO1 AI/CA 46973 to R.W., RO1 HL55718, RO1 DK50234, DARPA to D.T.S., a development grant from MGH-CMIR, the "Clafin" Distinguished Scholar Award, and Partners (Nesson) Investigator Award to N.C., and the“Bourse Lavoisier” from the French government and the French Society of Radiology to M.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Weissleder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewin, M., Carlesso, N., Tung, CH. et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18, 410–414 (2000). https://doi.org/10.1038/74464

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74464

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing