Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

High density synthetic oligonucleotide arrays

Abstract

Experimental genomics involves taking advantage of sequence information to investigate and understand the workings of genes, cells and organisms. We have developed an approach in which sequence information is used directly to design high–density, two–dimensional arrays of synthetic oligonucleotides. The GeneChip® probe arrays are made using spatially patterned, light–directed combinatorial chemical synthesis, and contain up to hundreds of thousands of different oligonucleotides on a small glass surface. The arrays have been designed and used for quantitative and highly parallel measurements of gene expression, to discover polymorphic loci and to detect the presence of thousands of alternative alleles. Here, we describe the fabrication of the arrays, their design and some specific applications to high–throughput genetic and cellular analysis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Light directed oligonucleotide synthesis.
Figure 2: Gene expression monitoring with oligonucleotide arrays.
Figure 3: Sequence analysis arrays.
Figure 4: Genotyping arrays.

Similar content being viewed by others

References

  1. Fodor, S.P.A. et al. Light–directed, spatially addressable parallel chemical synthesis. Science 251, 767– 773 (1991).

    Article  CAS  Google Scholar 

  2. Fodor, S.P.A. et al. Multiplexed biochemical assays with biological chips. Nature 364, 555–556 ( 1993).

    Article  CAS  Google Scholar 

  3. Pease, A.C. et al. Light–generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl Acad. Sci. USA 91, 5022–5026 (1994).

    Article  CAS  Google Scholar 

  4. Fodor, S.A. Massively parallel genomics. Science 277, 393–395 (1997).

    Article  CAS  Google Scholar 

  5. Southern, E., Maskos, U. & Elder, R. Hybridization with oligonucleotide arrays. Genomics 13, 1008–1017 ( 1992).

    Article  CAS  Google Scholar 

  6. Bowtell, D.L. Options available—from start to finish—for obtaining expression data by microarray. Nature Genet. 21, 25 –32 (1999).

    Article  CAS  Google Scholar 

  7. Duggan, D.J., Bittner, M., Chen, Y., Meltzer, P. & Trent, J. Expression profiling using cDNA microarrays. Nature Genet. 21, 10–14 (1999).

    Article  CAS  Google Scholar 

  8. Cheung, V.G. et al. Making and reading microarrays. Nature Genet. 21, 15–19 (1999).

    Article  CAS  Google Scholar 

  9. McGall, G.H. et al. The efficiency of light–directed synthesis of DNA arrays on glass substrates. J. Am. Chem. Soc. 119, 5081–5090 (1997).

    Article  CAS  Google Scholar 

  10. Pirrung, M.C., Fallon, L. & McGall, G. Proofing of photolithographic DNA synthesis with 3´ 5´–dimethoxybenzoinyloxycarbonyl–protected deoxynucleoside phosphoramidites. J. Organic Chem. 63, 241–246 (1998).

    Article  CAS  Google Scholar 

  11. Lockhart, D.J. et al. Expression monitoring by hybridization to high–density oligonucleotide arrays. Nature Biotechnol. 14, 1675–1680 (1996).

    Article  CAS  Google Scholar 

  12. Mack, D.H. et al. Deciphering molecular circuitry using high–density DNA arrays. in Biology of Tumors (eds Hihich, E. & Croce, E.) 85– 108 (Plenum Press, New York, 1998).

    Book  Google Scholar 

  13. Zhu, H., Cong, J.–P., Mamtora, G., Gingeras, T. & Shenk, T. Cellular expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc. Natl Acad. Sci. USA (in press).

  14. de Saizieu, A. et al. Bacterial transcript imaging by hybridization of total RNA to oligonucleotide arrays. Nature Biotechnol. 16, 45–48 (1998).

    Article  CAS  Google Scholar 

  15. Wodicka, L., Dong, H., Mittmann, M., M.–H. & Lockhart, D.J. Genome–wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnol. 15, 1359– 1367 (1997).

    Article  CAS  Google Scholar 

  16. Cho, R.J. et al. A genome–wide transcriptional analysis of the mititoc cell cycle. Mol. Cell 2, 65– 73 (1998).

    Article  CAS  Google Scholar 

  17. Gray, N.S. et al. Exploiting chemical libraries structure and genomics in the search for kinase inhibitors. Science 281, 533–538 (1998).

    Article  CAS  Google Scholar 

  18. Hacia, J. Resequencing and mutational analysis using oligonucleotide microarrays. Nature Genet. 21, 42–47 (1999).

    Article  CAS  Google Scholar 

  19. Cho, R.J. et al. Parallel analysis of genetic selections using whole genome oligonucleotide arrays. Proc. Natl Acad. Sci. USA 95, 3752 –3757 (1998).

    Article  CAS  Google Scholar 

  20. Winzeler, E.A. et al. Direct allelic variation scanning of the yeast genome. Science 281, 1194–1197 ( 1998).

    Article  CAS  Google Scholar 

  21. Chakravarti, A. Population genetics—making sense out of sequence. Nature Genet. 21, 56–60 ( 1999).

    Article  CAS  Google Scholar 

  22. Wang, D.G. et al. Large–scale identification, mapping, and genotyping of single–nucleotide polymorphisms in the human genome. Science 280, 1077–1082 ( 1998).

    Article  CAS  Google Scholar 

  23. Chee, M. et al. Accessing genetic information with high–density DNA arrays. Science 274, 610–614 (1996).

    Article  CAS  Google Scholar 

  24. Kozal, M. et al. Extensive polymorphisms observed in HIV–1 clade B protease gene using high density oligonucleotide arrays: implications for therapy. Nature Med. 7, 753–759 (1996).

    Article  Google Scholar 

  25. Gunthard, H.F., Wong, J.K., Ignacio, C.C., Havlir, D.V. & Richman, D.D. Comparative performance of high–density oligonucleotide sequencing and dideoxynucleotide sequencing of HIV type 1 pol from clinical samples. AIDS Res. Hum. Retroviruses 14, 869–876 (1998).

    Article  CAS  Google Scholar 

  26. Gingeras, T.R. et al. Simultaneous genotyping and species identification using hybridization pattern recognition analysis of generic Mycobacterium DNA arrays. Genome Res. 8, 435–448 ( 1998).

    Article  CAS  Google Scholar 

  27. Troesch, A. et al. Mycobacterium species identification and TB rifampin–resistance testing with high–density DNA probe arrays. J. Clin. Microbiol. (in press).

  28. Gunderson, K.L. et al. Mutation detection by ligation to complete N–mer DNA arrays. Genome Res. (in press).

  29. Sapolsky, R.J. & Lipshutz, R.J. Mapping genomic library clones using oligonucleotide arrays. Genomics 33, 445–456 (1996).

    Article  CAS  Google Scholar 

  30. Shoemaker, D.D., Lashkari, D.A., Morris, D., Mittmann, M. & Davis, R.W. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar–coding strategy. Nature Genet. 14, 450– 456 (1996).

    Article  CAS  Google Scholar 

  31. Beecher, J.E., McGall, G.H. & Goldberg, M.J. Chemically amplified photolithography for the fabrication of high density oligonucleotide arrays. Polymeric Materials Science & Engineering 76, 597–598 (1997).

    CAS  Google Scholar 

  32. McGall, G. et al. Light–directed synthesis of high–density oligonucleotide arrays using semiconductor photoresists. Proc. Natl Acad. Sci. USA 93, 13555–13560 ( 1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipshutz, R., Fodor, S., Gingeras, T. et al. High density synthetic oligonucleotide arrays. Nat Genet 21 (Suppl 1), 20–24 (1999). https://doi.org/10.1038/4447

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/4447

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing