Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Selection system for genes encoding nuclear-targeted proteins

Abstract

Nuclear proteins have essential roles in cell proliferation and differentiation. We have developed a yeast selection system—the nuclear transportation trap (NTT)—to identify genes encoding nuclear transport signals. Both unknown and previously identified nuclear localization signals were identified from a human fetal brain cDNA library. The majority (75%) of the unknown proteins examined were exclusively localized to the nucleus in COS-7 cells. We propose that NTT is an efficient method for isolating cDNAs that encode nuclear targeted proteins that can be applied to the retrieval of novel nuclear proteins and to annotate gene function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The nuclear transportation trap system.
Figure 2: NTT assay.
Figure 3: Subcellular distribution analysis of the gene products expressed in COS-7 and yeast cells.

Similar content being viewed by others

References

  1. Görlich, D., and Mattaj, I.W. 1996 . Nucleocytoplasmic transport. Science 271: 1513–1518.

    Article  Google Scholar 

  2. Nigg, E.A. 1997. Nucleocytoplasmic transport: signals, mechanisms and regulation . Nature 386: 779–787.

    Article  Google Scholar 

  3. Ullman, K.S., Powers, M.A., and Forbes, D.J. 1997. Nuclear export receptors: from importin to exportin. Cell 90: 967– 970.

    Article  Google Scholar 

  4. Pemberton, L.F., Blobel, G., and Rosenblum, J.S. 1988. Transport routs through the nuclear pore complex. Curr. Opin. Cell Biol. 10: 392–399.

    Article  Google Scholar 

  5. Wozniak, R.W., Rout, M.P., and Aitchison, J.D. 1988. Karyopherins and kissing cousins. Trends Cell Biol. 8: 184– 188.

    Article  Google Scholar 

  6. Ohno, M., Fornerod, M., and Mattaj, I.W. 1998. Nucleocytoplasmic transport: the last 200 nanometers. Cell 92: 327– 336.

    Article  Google Scholar 

  7. Doye, V. and Hurt, E. From nucleoporins to nuclear pore complexes . 1997. Curr. Opin. Cell Biol. 9: 401–411.

    Article  Google Scholar 

  8. Brent, R. and Ptashne, M. 1985. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor . Cell 43: 729–736.

    Article  Google Scholar 

  9. Ma, J. and Ptashne, M. 1987. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48: 847–853.

    Article  Google Scholar 

  10. Wen, W., Meinkoth, J.L., Tsien, R.Y., and Taylor, S.S. 1995. Identification of a signal for rapid export of proteins from the nucleus. Cell 82: 463– 473.

    Article  Google Scholar 

  11. Estojak, J., Brent, R., and Golemis, E.A. 1995. Correlation of two-hybrid affinity data with in vitro measurements. Mol. Cell Biol. 15: 5820–5829.

    Article  Google Scholar 

  12. Hoshino, T. and Kose K. 1989. Cloning and nucleotide sequence of braC, the structural gene for the leucine, isoleucine, and valine-binding protein of Pseudomonas aeruginosa PAO. J. Bacteriol. 171: 6300–6306.

    Article  Google Scholar 

  13. Tokumitsu, H., Enslen, H., and Soderling, T.R. 1995. Characterization of a Ca2+/calmodulin-dependent protein kinase cascade. Molecular cloning and expression of calcium/calmodulin-dependent protein kinase kinase. J. Biol. Chem. 270: 19320–19324.

    Article  Google Scholar 

  14. Ganchi, P.A., Sun, S.C., Greene, W.C., and Ballard, D.W. 1992 . I kappa B/MAD-3 masks the nuclear localization signal of NF-kappa B p65 and requires the transactivation domain to inhibit NF-kappa B p65 DNA binding. Mol. Biol. Cell 3: 1339– 1352.

    Article  Google Scholar 

  15. Tratner, I. and Verma, I.M. 1991. Identification of a nuclear targeting sequence in the Fos protein. Oncogene 6: 2049–2053.

    PubMed  Google Scholar 

  16. Stade, K., Ford, C.S., Guthrie, C., and Weis, K. 1997. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90: 1041–1050.

    Article  Google Scholar 

  17. Stutz, F., Neville, M., and Rosbash, M. 1995. Identification of a novel nuclear pore-associated protein as a functional target of the HIV-1 rev protein in yeast. Cell 82: 495–506 .

    Article  Google Scholar 

  18. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403– 410.

    Article  Google Scholar 

  19. Landschulz, W.H., Johnson, P.F., and McKnight, S.L. 1988. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240: 1759–1764.

    Article  Google Scholar 

  20. Lupas, A. 1996. Coiled coils: new structures and new functions. Trends Biochem. Sci. 21: 375–382.

    Article  Google Scholar 

  21. Fagotto, F., Gluck, U., and Gumbiner, B.M. 1998. Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of beta-catenin. Curr. Biol. 8: 181–190.

    Article  Google Scholar 

  22. Shimizu, K., Shirataki, H., Honda, T., Minami, S., and Takai, Y. 1998. Complex formation of SMAP/KAP3, a KIF3A/B ATPase motor-associated protein, with a human chromosome-associated polypeptide. J. Biol. Chem. 273: 6591– 6594.

    Article  Google Scholar 

  23. Peifer, M., Berg, S., and Reynolds, A.B. 1994. A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 76: 789–791.

    Article  Google Scholar 

  24. Riggleman, B., Wieschaus, E., and Schedl, P. 1989. Molecular analysis of the armadillo locus: uniformly distributed transcripts and a protein with novel internal repeats are associated with a Drosophila segment polarity gene. Genes Dev. 3: 96–113.

    Article  Google Scholar 

  25. Weis, K., Ryder, U., and Lamond, A.I. 1996. The conserved amino-terminal domain of hSRP1 alpha is essential for nuclear protein import. EMBO J. 15: 1818–1825.

    Article  Google Scholar 

  26. Görlich, D., Henklein, P., Laskey, R.A., and Hartmann, E. 1996. A 41 amino acid motif in importin-alpha confers binding to importin-beta and hence transit into the nucleus. EMBO J. 15: 1810–1817.

    Article  Google Scholar 

  27. Cortes, P., Ye, Z.S., and Baltimore, D. 1994. RAG-1 interacts with the repeated amino acid motif of the human homologue of the yeast protein SRP1 . Proc. Natl. Acad. Sci. USA 91: 7633– 7637.

    Article  Google Scholar 

  28. Sekimoto, T., Imamoto, N., Nakajima, K., Hirano, T., and Yoneda, Y. 1997. Extracellular signal-dependent nuclear import of Stat1 is mediated by nuclear pore-targeting complex formation with NPI-1, but not Rch1. EMBO J. 16: 7067–7077.

    Article  Google Scholar 

  29. Conti, E., Uy, M., Leighton, L., Blobel, G., and Kuriyan, J. 1998. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 94: 193– 204.

    Article  Google Scholar 

  30. Michael, W.M., Eder, P.S., and Dreyfuss, G. 1997. The K nuclear shuttling domain: a novel signal for nuclear import and nuclear export in the hnRNP K protein . EMBO J. 16: 3587–3598.

    Article  Google Scholar 

  31. Ferrari, S., Battini, R., Kaczmarek, L., Rittling, S., Calabretta, B., de Riel, J.K. et al. 1986. Coding sequence and growth regulation of the human vimentin gene. Mol. Cell. Biol. 6: 3614–3620.

    Article  Google Scholar 

  32. MacLeod, A.R., Houlker, C., Reinach, F.C., and Talbot, K. 1986. The mRNA and RNA-copy pseudogenes encoding TM30nm, a human cytoskeletal tropomyosin. Nucleic Acids Res. 14: 8413–8426.

    Article  Google Scholar 

  33. Tanaka, T., Inazawa, J., and Nakamura, Y. 1996. Molecular cloning and mapping of a human cDNA for cytosolic malate dehydrogenase (MDH1). Genomics 32: 128–130.

    Article  Google Scholar 

  34. Bach, I., Carriere, C., Ostendorff, H.P., Andersen, B., and Rosenfeld, M.G. 1997. A family of LIM domain-associated cofactors confer transcriptional synergism between LIM and Otx homeodomain proteins. Genes Dev. 11: 1370–1380.

    Article  Google Scholar 

  35. Tsuboi, A., Muramatsu, M., Tsutsumi, A., Arai, K., and Arai, N. 1994. Calcineurin activates transcription from the GM-CSF promoter in synergy with either protein kinase C or NF-kappa B/AP-1 in T cells. Biochem. Biophys. Res. Commun. 199: 1064–1072.

    Article  Google Scholar 

  36. Wente, S.R., Rout, M.P., and Blobel, G. 1992. A new family of yeast nuclear pore complex proteins. J. Cell Biol. 119: 705–723.

    Article  Google Scholar 

  37. Lupas, A. 1996. Prediction and analysis of coiled-coil structures. Methods Enzymol. 266: 513–525.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the staff at HRI for supporting our work, and M.B. Swindells for comments regarding the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhide Ueki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueki, N., Oda, T., Kondo, M. et al. Selection system for genes encoding nuclear-targeted proteins. Nat Biotechnol 16, 1338–1342 (1998). https://doi.org/10.1038/4315

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4315

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing