
In June, Nick Fisher issued a dire-sounding
warning. He is president of the Statistical
Society of Australia, and fears that sloppy

statistics could undermine the revolution
promised by genomics and biotechnology.
“If the collection, analysis and interpretation
of the data are flawed then it may not only 
be a waste of a valuable resource — we could
draw faulty conclusions and potentially risk
our health and environment,” Fisher claimed
in a release to the media.

Fisher has a vested interest: he wants
research organizations to employ profes-
sionally accredited statisticians — his soci-
ety’s members — to oversee the collection
and analysis of genomic data. But he has a
point. Technologies such as DNA micro-
arrays have sent avalanches of data tumbling
into labs where, previously, analysing the
results of an experiment meant little more
than glancing at an electrophoretic gel.

Over the past few years, microarrays,
also known as DNA chips, have transformed
molecular genetics, allowing researchers to
study the activity of thousands of genes at a
time. For example, you can compare healthy
tissues with those that are cancerous, to
identify genes that become more, or less,
active in a developing tumour. But how do
you separate significant differences in gene
expression from background fluctuation? 

This is where good experimental design
and statistical analysis should come in. But
there are no simple answers: interpreting
microarray experiments is taxing the skills 
of even the most adept number-crunchers.
“It’s a technical and esoteric topic,” says Paul
Meltzer, a cancer geneticist and microarray
specialist at the National Human Genome
Research Institute in Bethesda, Maryland. If
trying to make sense of microarray data has
left you with spots circling before your eyes,
you’re in good company.

The problem is perverse: a typical
microarray experiment provides both too
much information, and too little. In most
research projects, the idea is to study a small
number of variables and repeat the measure-
ments over and over again.Provided that you
perform enough replicates, standard statisti-
cal tests can establish whether experimental
results have real significance, or are more
likely to be a consequence of random noise.
Microarrays turn this approach on its head:
there can be thousands of variables, corre-
sponding to the number of individual genes

being studied; but the high cost of the chips
means that the number of repeated observa-
tions is usually very low.

In their initial forays into microarray
research, many biologists didn’t even try to
use statistical methods. Some of the earliest
papers simply recorded whether genes were
active or not. Even when researchers began 
to use microarrays to measure levels of gene
expression, they tended not to quote standard
error values or confidence limits, and differ-
ences were judged to be meaningful if they
exceeded some arbitrary level. Today, many
manuscripts submitted to journals still focus
their conclusions on genes that show a change
in activity of,say,more than twofold.

But how do you know whether or not an
apparent twofold change in gene expression
is biologically meaningful? That’s a difficult
question to answer, because of the many

sources of noise that can cloud the results.
The concept of microarray analysis is 

simple enough:messenger RNAs are extracted
from a biological sample,converted into DNA,
labelled with fluorescent dyes, and then
washed over a glass slide bearing a grid spotted
with DNA sequences from known genes. The
labelled sequences bind to spots representing
the genes from which the messenger RNAs
were transcribed. So by analysing the location
and intensity of the fluorescent signals, you
can determine the level of activity for each
gene.In some cases,it is possible to analyse two
samples on the same chip by using different
coloured dyes.

But noise creeps into microarray experi-
ments at every stage, from the preparation of
tissue samples to the extraction of data.Using
different dyes can influence the results
recorded by the lasers that measure the fluo-
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Vital statistics
DNA microarrays have given geneticists and molecular biologists access to
more data than ever before. But do these researchers have the statistical
know-how to cope? Claire Tilstone investigates.
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rescent signals,as can the location of the spots
on the chip, or any unevenness or dust on 
the glass slide. Even using samples from the 
same piece of tissue, it is possible to get differ-
ent profiles of gene expression using different
microarray technologies1.

Few researchers are in a position to repeat
their experiments using various microarray
systems. But it should, in theory, be possible
to perform two other types of replication.
First, each sample can be subdivided and 
the experiment repeated on several chips 
to assess fluctuation from array to array.You
can also perform measurements on several
different samples within each experimental
condition. This replication is particularly
important, as it is the only way to address
fluctuations in gene expression between 
biological samples that have nothing to do
with the issue under investigation.

The main deterrent is cost: commercial
DNA chips retail for about US$1,000 each.
And in some cases, for instance when study-
ing rare diseases, it can be difficult to obtain
enough samples to perform the desired
replicates. One way round the cost issue is to
collect several samples,pool them,and apply
them to just one microarray. But the jury on
pooling is still out. Many experts believe it 
is a bad idea because valuable information
on sample-to-sample variation is obscured;

others endorse the practice as a reasonable
compromise that helps to smooth out back-
ground fluctuation.

Even if you decide to perform proper,
non-pooled replicates, it is difficult to know
how many to do. One paper investigating 
the topic, published in 2000, recommended
at least three replicates2. But among statisti-
cians who have considered the issue, there 
is no clear consensus.“The number of repli-
cates really depends on the kind of accuracy
one wants to achieve,”says Ernst Wit,a statis-
tical geneticist at the University of Glasgow,
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UK.“It is impossible to come up with a single
recommendation.”

Biologists are now trying to use replica-
tion and statistical analysis to separate mean-
ingful changes in gene expression from 
background noise, often using software
packages produced by academic researchers
and available for free download,or marketed
by chip manufacturers. But in many cases,
say experts, the statistics aren’t being used
correctly. “The majority of microarray
papers are analysed with substandard meth-
ods,” claims David Allison, a biostatistician
at the University of Alabama at Birmingham.

Noise abatement
One source of confusion is how to correct for
the ‘false positive’ results that are a conse-
quence of the multiple comparisons inherent
to microarray analysis. The results for an
individual gene may suggest that there is only
a 5% chance that recorded differences in its
activity are the result of chance fluctuations;
but if you repeat the same test across 10,000
genes, you are likely to get 500 ‘significant’
results even if there is no real difference in
gene expression. For simpler data sets, estab-
lished methods exist for dealing with multiple
comparisons. But opinions differ on how
these should be applied to microarray data,
says John Quackenbush, a specialist in
genomic data analysis at The Institute for
Genomic Research in Rockville, Maryland.

For many biologists running microarray
experiments, comparing the activity of indi-
vidual genes across different experimental
conditions is only the start. The true power 
of the technology, Quackenbush argues, is 
its ability to reveal common patterns of gene
expression across different samples. Very
often, genes with similar profiles of activity
will have related functions or be regulated by
common mechanisms.

Grouping genes in this way involves statis-
tical techniques collectively known as cluster
analysis. The first step is to draw up a gene-
expression matrix in which the rows represent
individual genes, the columns are individual
samples, and each cell contains a measure of

A sight for sore eyes? Statistical analysis of the data provided by DNA chips can be a major headache.
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the gene’s activity.From this matrix,each gene
can be given a coordinate called its ‘expression
vector’, which represents a point in an n-
dimensional mathematical space, where n is
the number of samples. The precise position
of each gene in each dimension depends on its
level of activity in the sample concerned.

The genes are then clustered into groups
by methods that ‘measure’ the distances
between their respective expression vectors.
The difficulty is that there are various ways 
of doing this, which delight in exotic names
such as ‘k-means clustering’ or ‘self-organiz-
ing maps’3. Statistical experts struggle to
agree over which clustering method should
be applied under what circumstances. And
for most biologists — even those whose eyes
haven’t glazed over at the initial mention of
an n-dimensional space — the detailed work-
ings of these methods remain a mystery.

Nevertheless, cluster analysis has caught
on, and the most common approach is a
technique called hierarchical clustering, first
applied to microarray data in a paper pub-
lished in 1998 by David Botstein and other
microarray pioneers at Stanford University
in California4. Here, an iterative algorithm
draws up a tree in which the lengths of the
branches correspond to the degree of simi-
larity between genes.

General clusters
Hierarchical clustering has helped flustered
researchers to make sense of what would
otherwise be unmanageable spreadsheets of
data. But statistical purists point to prob-
lems with the way in which it is being
applied. Some argue that the technique is
best suited to determining relationships
between a small number of variables, rather
than deriving patterns involving thousands
of genes across a huge data set. “Hierarchical
trees are famously unreliable for good high-
level clusters,” explains Wit.

This means that biologists can be sent
down blind alleys,if they see clusters that rein-
force their own assumptions about the rela-
tionships between individual genes. “People
just tend to pick their favourite cluster for 
further study,”says Allison, who likes to play a
trick on biologists: he presents them with two
trees drawn up from simulated microarray
data, one representing genuine clusters of
genes with similar expression profiles, the
other in which the genes have been clustered
randomly. When he shows this slide, Allison 
is greeted by gasps and chuckles, as those in 
the audience realize that they don’t have an
intuitive ability to recognize a ‘true’cluster.

Cluster analysis can also group samples
that show similar patterns of genome-wide
gene expression. The power of this approach
was demonstrated in 2000 by a team led by
Louis Staudt of the National Cancer Institute
in Bethesda,Maryland,which used hierarchi-
cal clustering to group B-cell lymphomas into
two distinct classes.These correlated with dif-

ferences in patient survival, and seemed from
their gene-expression profiles to be related 
to the stage of development of the cell from
which the cancer originated5. But last year
another group, using a different clustering
method,failed to find this association6.

Experts argue that such disagreements
are only to be expected, given that micro-
array analysis is a young and fast-moving
field. They point to efforts to refine the 
statistical methods applied to microarray
data, such as the annual Critical Assessment
of Microarray Data Analysis (CAMDA)
meeting,now in its fourth year.Organized by
Simon Lin and Kimberly Johnson of Duke
University in Durham, North Carolina,
CAMDA culminates in the award of a prize
to the group judged to have conducted the
best analysis of real data sets posted before
the meeting on CAMDA’s website.

Quackenbush, who is giving a seminar at
the next CAMDA gathering in November,
suspects that there may never be agreement
on the ‘right’ statistical techniques to deploy
on microarray data. The future, he suggests,
lies in incorporating additional biological
information into the analysis. He points to 
a paper published in March, in which 
microarray data and information on the
chromosomal location of genes that influ-
ence obesity were considered together to
identify two subtypes of obesity in mice7.

Array of hope
While microarray experts push back the
frontiers, efforts are being made to improve
standards of experimental design, data pre-
sentation and analysis among rank-and-file
users of the technology. Particularly useful
is a set of guidelines called minimum infor-
mation about a microarray experiment
(MIAME), laid down by the international
Microarray Gene Expression Data Society.
These include specific statements about
experimental design, including the number
of replicates done, allowing researchers to
interpret one another’s data more easily.

Many journals are now toughening up
their criteria for accepting papers describing
microarray experiments. Since December
2002, for instance, Nature and its sister
research journals have required authors of

such papers to complete a MIAME checklist;
data must also be submitted before publica-
tion to one of the two main public repositories
for microarray data8. One of the most explicit
statements has come from the journal Arthri-
tis & Rheumatism, which in April last year
published guidelines stressing the importance
of appropriate statistical analysis9. “It is not
sufficient to say that the expression of a partic-
ular gene is twofold greater in a sample than 
in a control,” the journal’s editors stated.

Chip manufacturers and specialists in
academia are also trying to help microarray
users become more rigorous. Last year, for
instance, the chip-making firm Affymetrix 
of Santa Clara, California, began a series of
worldwide workshops on experimental
design and the use of statistical software.
Meanwhile, the Bioconductor project, run by
the Dana Farber Cancer Institute in Boston, is
backing its programs for genomic data 
analysis with short courses in their use. By the
end of 2003, these will have taken place in the
United States,Europe and Taiwan.

Standards should improve further as sta-
tistics and bioinformatics become more
prominent components in the training of
molecular biologists, and as a growing num-
ber of statistical experts gets to grips with the
complexities of microarrays. “There are lots
of good statisticians out there, but not as
many of them have been exposed to micro-
array data as are needed,”says Meltzer.

In the meantime,the message to biologists
is clear: if you want to work with microarrays,
you need to find yourself one of these precious
experts — and don’t wait until after you’ve
collected your data. The following advice,
from pioneering British geneticist and statis-
tician Ronald Fisher, rings even more true
today than when he uttered it, back in 1938:
“To call in the statistician after the experiment
is done may be no more than asking him to
perform a post-mortem examination:he may
be able to say what the experiment died of.” n

Claire Tilstone is a postgraduate at the University of Bath,

UK, studying science communication; further reporting by

Peter Aldhous, Nature’s chief news and features editor.
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Branching out: cluster analysis can group samples
that show similar patterns of gene expression.
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