Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MAP kinase signalling cascade in Arabidopsis innate immunity

Abstract

There is remarkable conservation in the recognition of pathogen-associated molecular patterns (PAMPs) by innate immune responses of plants, insects and mammals. We developed an Arabidopsis thaliana leaf cell system based on the induction of early-defence gene transcription by flagellin, a highly conserved component of bacterial flagella that functions as a PAMP in plants and mammals. Here we identify a complete plant MAP kinase cascade (MEKK1, MKK4/MKK5 and MPK3/MPK6) and WRKY22/WRKY29 transcription factors that function downstream of the flagellin receptor FLS2, a leucine-rich-repeat (LRR) receptor kinase. Activation of this MAPK cascade confers resistance to both bacterial and fungal pathogens, suggesting that signalling events initiated by diverse pathogens converge into a conserved MAPK cascade.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Early-defence gene activation by flg22.
Figure 2: Flg22 activates MPK3 and MPK6 through FLS2.
Figure 3: MKK4 and MKK5 activate MPK3/MPK6 and early-defence genes.
Figure 4: MEKK1 initiates the flg22 MAPK cascade.
Figure 5: The flg22 MAPK cascade and specific WRKYs are important for Arabidopsis defence.
Figure 6: Model of innate immune signalling activated by LRR receptors in Arabidopsis, mammals and Drosophila.

Similar content being viewed by others

References

  1. Boller, T. Chemoperception of microbial signals in plant cells. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 46, 189–214 (1995).

    Article  CAS  Google Scholar 

  2. Aderem, A. & Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).

    Article  CAS  Google Scholar 

  3. Meindl, T., Boller, T. & Felix, G. The bacterial elicitor flagellin activates its receptor in tomato cells according to the address-message concept. Plant Cell 12, 1783–1794 (2000).

    Article  CAS  Google Scholar 

  4. Khush, R. S. & Lemaitre, B. Genes that fight infection. Trends Genet. 16, 442–449 (2000).

    Article  CAS  Google Scholar 

  5. Cohn, J., Sessa, G. & Martin, G. B. Innate immunity in plants. Curr. Opin. Immunol. 13, 55–62 (2001).

    Article  CAS  Google Scholar 

  6. Dangl, J. L. & Jones, J. D. G. Plant pathogens and integrated defence responses to infection. Nature 411, 826–833 (2001).

    Article  ADS  CAS  Google Scholar 

  7. Nurnberger, T. & Scheel, D. Signal transmission in plant immune response. Trends Plant Sci. 6, 372–379 (2001).

    Article  CAS  Google Scholar 

  8. Staskawicz, B. J., Mudgett, M. B., Dangl, J. L. & Galan, J. E. Common and contrasting themes of plant and animal diseases. Science 292, 2285–2289 (2001).

    Article  CAS  Google Scholar 

  9. Samakovlis, C., Asling, B., Boman, H. G., Gateff, E. & Hultmark, D. In vitro induction of cecropin genes—an immune response in a Drosophila blood cell line. Biochem. Biophys. Res. Commun. 188, 1169–1175 (1992).

    Article  CAS  Google Scholar 

  10. Felix, G., Duran, J., Volko, S. & Boller, T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18, 265–276 (1999).

    Article  CAS  Google Scholar 

  11. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  ADS  CAS  Google Scholar 

  12. Gomez-Gomez, L. & Boller, T. FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5, 1003–1011 (2000).

    Article  CAS  Google Scholar 

  13. Gomez-Gomez, L., Felix, G. & Boller, T. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J. 18, 277–284 (1999).

    Article  CAS  Google Scholar 

  14. Romeis, T. et al. Rapid Avr9- and Cf9-dependent activation of MAP kinases in tobacco cell cultures and leaves: Convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell 11, 273–287 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Blume, B., Nurnberger, T., Nass, N. & Scheel, D. Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12, 1425–1440 (2000).

    Article  CAS  Google Scholar 

  16. Hirt, H. & Scheel, D. in Results and Problems in Cell Differentiation: MAP Kinases in Plant Signal Transduction (ed. Hirt, H.) 85–93 (Springer, Heidelberg, 2000).

    Google Scholar 

  17. Zhang, S. & Klessig, D. F. MAPK cascades in plant defense signaling. Trends Plant Sci. 6, 520–527 (2001).

    Article  CAS  Google Scholar 

  18. Romeis, T. Protein kinases in the plant defence response. Curr. Opin. Plant Biol. 4, 407–414 (2001).

    Article  CAS  Google Scholar 

  19. Tena, G., Asai, T., Chiu, W.-L. & Sheen, J. Plant MAP kinase signaling cascades. Curr. Opin. Plant Biol. 4, 392–400 (2001).

    Article  CAS  Google Scholar 

  20. Ligterink, W., Kroj, T., Zurnieden, U., Hirt, H. & Scheel, D. Receptor-mediated activation of a MAP kinase in pathogen defense in plants. Science 276, 2054–2057 (1997).

    Article  CAS  Google Scholar 

  21. Zhang, S. & Klessig, D. F. Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection. Proc. Natl Acad. Sci. USA 95, 7433–7438 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Zhang, S., Du, H. & Klessig, D. F. Activation of the tobacco SIP kinase by both a cell-wall-derived carbohydrate elicitor and purified proteinaceous elicitins from Phytophthora spp. Plant Cell 10, 435–449 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nuhse, T. S., Peck, S. C., Hirt, H. & Boller, T. Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK6. J. Biol. Chem. 275, 7521–7526 (2000).

    Article  CAS  Google Scholar 

  24. Cardinale, F. et al. Differential activation of four specific MAPK pathways by distinct elicitors. J. Biol. Chem. 275, 36734–36740 (2000).

    Article  CAS  Google Scholar 

  25. Lee, J., Klessig, D. F. & Nurnberger, T. A. A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell 13, 1079–1093 (2001).

    Article  CAS  Google Scholar 

  26. Sheen, J. Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol. (in the press).

  27. Durrant, W. E., Rowland, O., Piedras, P., Hammond-Kosack, K. E. & Jones, J. D. G. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell 12, 963–977 (2000).

    Article  CAS  Google Scholar 

  28. Maleck, K. et al. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genet. 26, 403–410 (2000).

    Article  CAS  Google Scholar 

  29. Schenk, P. M. et al. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl Acad. Sci. USA 97, 11655–11660 (2000).

    Article  ADS  CAS  Google Scholar 

  30. Asai, T. et al. Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell 12, 1823–1835 (2000).

    Article  CAS  Google Scholar 

  31. Glazebrook, J. Genes controlling expression of defense responses in Arabidopsis—2001 status. Curr. Opin. Plant Biol. 4, 301–308 (2001).

    Article  CAS  Google Scholar 

  32. Eulgem, T., Rushton, P. J., Robatzek, S. & Somssich, I. E. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5, 199–206 (2000).

    Article  CAS  Google Scholar 

  33. Eulgem, T., Rushton, P. J., Schmeizer, E., Hahlbrock, K. & Somssich, I. E. Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J. 18, 4689–4699 (1999).

    Article  CAS  Google Scholar 

  34. Du, L. & Chen, Z. Identification of genes encoding receptor-like protein kinases as possible targets of pathogen- and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis. Plant J. 24, 837–847 (2000).

    Article  CAS  Google Scholar 

  35. Kovtun, Y., Chiu, W.-L., Tena, G. & Sheen, J. Function analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl Acad. Sci. USA 97, 2940–2945 (2000).

    Article  ADS  CAS  Google Scholar 

  36. Kovtun, Y., Chiu, W.-L., Zeng, W. & Sheen, J. Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395, 716–720 (1998).

    Article  ADS  CAS  Google Scholar 

  37. Mizoguchi, T., Ichimura, K., Yoshida, R. & Shinozaki, K. in Results and Problems in Cell Differentiation: MAP Kinases in Plant Signal Transduction (ed. Hirt, H.) 29–38 (Springer, Heidelberg, 2000).

    Book  Google Scholar 

  38. Jouannic, S. et al. Plant MAP kinase kinase kinase structure, classification and evolution. Gene 233, 1–11 (1999).

    Article  CAS  Google Scholar 

  39. Xiang, C., Han, P., Lutziger, I., Wang, K. & Oliver, D. J. A mini binary vector series for plant transformation. Plant Mol. Biol. 40, 711–717 (1999).

    Article  CAS  Google Scholar 

  40. Peck, S. C. et al. Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell 13, 1467–1475 (2001).

    Article  CAS  Google Scholar 

  41. Yang, K.-Y., Liu, Y. & Zhang, S. Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc. Natl Acad. Sci. USA 98, 741–746 (2001).

    Article  ADS  CAS  Google Scholar 

  42. Petersen, M. et al. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103, 1111–1120 (2000).

    Article  CAS  Google Scholar 

  43. Frye, C. A., Tang, D. & Innes, R. W. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl Acad. Sci. USA 98, 373–378 (2001).

    Article  ADS  CAS  Google Scholar 

  44. Swiderski, M. R. & Innes, R. W. The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J. 26, 101–112 (2001).

    Article  CAS  Google Scholar 

  45. Madhani, H. D. & Fink, G. R. The riddle of MAP kinase signalling specificity. Trends Genet. 14, 151–155 (1998).

    Article  CAS  Google Scholar 

  46. Patharkar, O. R. & Cushman, J. C. A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator. Plant J. 24, 679–691 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Xiang for the pCB302 minibinary vector, O. R. Patharkar and J. Cushman for the DsRed-CSP1 plasmid; S. Volko and J. Stone for sharing unpublished information; S.-H. Cheng, B. Moore and I. Hwang for technical advice; W.-C. Chen for help in bioinformatics; and S. Ramu and F. Rolland for critical reading of the manuscript. This work was supported by a NSF plant genome project grant to J.S. and F.M.A., a USDA grant to J.S., and a NIH grant to F.M.A. T.A. was supported in part by fellowships from the Toyobo Biotechnology Foundation and the Uehara Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen Sheen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asai, T., Tena, G., Plotnikova, J. et al. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977–983 (2002). https://doi.org/10.1038/415977a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415977a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing