Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice

Abstract

MICE that have mutations in both myogenic transcription factors Myf-5 and MyoD totally lack skeletal muscle fibres and their precursor myoblasts1, whereas with either mutation alone, muscle is present2,3. Skeletal muscle in the vertebrate body is derived from epithelial somites that respond to environmental signals to form the dorsal epithelial dermomyotome (dermis, muscle) and ventral mesenchymal sclerotome (axial skeleton, ribs) 4,5. The first muscle, the myotome, forms centrally in the somite, when only myf-5 is programming myogenesis. By targeting the nlacZ reporter gene into the myf-5 locus, we demonstrate that β-galactosidase muscle progenitor cells are present in the dermomyotome of myf-5 null embryos, and that they undergo a normal epithelial-mesenchymal transition; however, they migrate aberrantly. Dorsally, they accumulate under the ectoderm and express a non-muscle dermal marker, Dermo-1. Ventrally, β-galactosidase+ cells also fail to localize correctly, express a cartilage marker scleraxis, and are subsequently found in ribs. Therefore Myf-5 protein is necessary for cells to respond correctly to positional cues in the embryo and to adopt their myogenic fate. In its absence, muscle progenitors, having activated myf-5, remain multipotent and differentiate into other somitic derivatives according to their local environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rudnicki, M. A. et al. Cell 75, 1351–1359 (1993).

    Article  CAS  Google Scholar 

  2. Braun, T., Rudnicki, M. A., Arnold, H.-H. & Jaenisch, R. Cell 71, 369–382 (1992).

    Article  CAS  Google Scholar 

  3. Rudnicki, M. A., Braun, T., Hinuma, S. & Jaenisch, R. Cell 71, 383–390 (1992).

    Article  CAS  Google Scholar 

  4. Cossu, G., Tajbakhsh, S. & Buckingham, M. Trends Genet. 12, 218–223 (1996).

    Article  CAS  Google Scholar 

  5. Christ, B. & Ordahl, C. P. Anatomy Embryol. 191, 381–396 (1995).

    Article  CAS  Google Scholar 

  6. Ott, M.-O., Bober, E., Lyons, G., Arnold, H. & Buckingham, M. Development 111, 1097–1107 (1991).

    CAS  Google Scholar 

  7. Buckingham, M. Trends Genet. 8, 144–149 (1992).

    Article  CAS  Google Scholar 

  8. Tosney, K. W., Dehnbostel, D. B. & Erickson, C. A. Dev. Biol. 163, 389–406 (1994).

    Article  CAS  Google Scholar 

  9. Li, L., Cserjesi, P. & Olson, E. N. Dev. Biol. 172, 280–292 (1995).

    Article  CAS  Google Scholar 

  10. Cserjesi, P. et al. Development 121, 1099–1110 (1995).

    CAS  PubMed  Google Scholar 

  11. Grass, S., Arnold, H. H. & Braun, T. Development 122, 141–150 (1996).

    CAS  PubMed  Google Scholar 

  12. Tajbakhsh, S. & Buckingham, M. E. Proc. Natl Acad. Sci. USA 91, 747–751 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Siegfried, E. & Perrimon, N. Bioessays 16, 395–404 (1994).

    Article  CAS  Google Scholar 

  14. Epstein, J. A., Shapiro, D. N., Cheng, J., Lam, P. Y. P. & Maas, R. L. Proc. Natl Acad. Sci. USA 93, 4213–4218 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Yang, X.-M., Vogan, K., Gros, P. & Park, M. Development 122, 2163–2171 (1996).

    CAS  PubMed  Google Scholar 

  16. Hay, E. D. Curr. Opin. Cell Biol. 5, 1029–1035 (1993).

    Article  CAS  Google Scholar 

  17. Gurdon, J. B. Nature 336, 772–774 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Cossu, G., Kelly, R., Di Donna, S., Vivarelli, E. & Buckingham, M. Proc. Natl Acad. Sci. USA 92, 2254–2258 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Godsave, S. F. & Slack, J. M. Development 111, 523–530 (1991).

    CAS  Google Scholar 

  20. Rong, P. M., Teillet, M. A., Ziller, C. & Le Douarin, N. M. Development 115, 657–672 (1992).

    CAS  Google Scholar 

  21. Bober, E. et al. Development 120, 3073–3082 (1994).

    CAS  PubMed  Google Scholar 

  22. Pownall, M. E., Strunk, K. E. & Emerson, C. P. Jr Development 122, 1475–1488 (1996).

    CAS  PubMed  Google Scholar 

  23. Tajbakhsh, S. et al. Dev. Dyn. 206, 291–300 (1996).

    Article  CAS  Google Scholar 

  24. Magin, T. M., McWhir, J. & Melton, D. W. Nucleic Acids Res. 20, 3795–3796 (1992).

    Article  CAS  Google Scholar 

  25. Tajbakhsh, S. & Buckingham, M. E. Development 121, 4077–4083 (1995).

    CAS  PubMed  Google Scholar 

  26. Tajbakhsh, S. & Houzelstein, D. Trends Genet. 11, 42 (1995).

    Article  CAS  Google Scholar 

  27. Yagi, T. et al. Proc. Natl Acad. Sci. USA 87, 9918–9922 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tajbakhsh, S., Rocancourt, D. & Buckingham, M. Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice. Nature 384, 266–270 (1996). https://doi.org/10.1038/384266a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384266a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing