Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of root growth and development by cyclin expression

Abstract

ROOT development is plastic, with post-embryonic organogenesis being mediated by meristems1. Although cell division is intrinsic to meristem initiation, maintenance and proliferative growth, the role of the cell cycle in regulating growth and development is unclear. To address this question, we examined the expression of cdc2 and cyc genes, which encode the catalytic and regulatory subunits, respectively, of cyclin-dependent protein kinases that control progression through the cell cycle2. Unlike cdc2, which is expressed not only in apical meristems but also before lateral root initiation3 in quiescent, pericycle cells arrested in the G2 phase of the cell cycle4, cyclAt transcripts accumulate specifically in dividing cells immediately before cytokinesis. Ectopic expression of cyclAt under the control of the cdc2aAt promoter in Arabidopsis plants markedly accelerates growth without altering the pattern of lateral root development or inducing neoplasia. Thus cyclin expression is a limiting factor for growth, which in turn drives indeterminate development of the root system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Steeves, T. A. & Sussex, I. M. Patterns in Plant Development 1–388 (Press Syndicate of the University of Cambridge, UK, 1989).

    Google Scholar 

  2. Murray, A. & Hunt, T. The Cell Cycle (Freeman, New York, 1993).

    Google Scholar 

  3. Martinez, M. C., Jørgensen, J.-E., Lawton, M. A., Lamb, C. J. & Doerner, P. W. Proc. natn. Acad. Sci. U.S.A. 89, 7360–7364 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Blakely, L. M. & Evans, T. A. Plant Sci. Lett. 14, 79–83 (1979).

    Article  CAS  Google Scholar 

  5. Hemerly, A. et al. EMBO J. 14, 3295–3299 (1995).

    Article  Google Scholar 

  6. Hemerly, A., Bergounioux, C., Van Montagu, M., Inzé, D. & Ferreira, P. Proc. natn. Acad. Sci. U.S.A. 89, 3295–3299 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Dolan, L. et al. Development 119, 71–84 (1993).

    CAS  Google Scholar 

  8. Fobert, P. R., Coen, E. S., Murphy, G. J. P. & Doonan, J. H. EMBO J. 13, 616–624 (1994).

    Article  CAS  Google Scholar 

  9. Ferreira, P. C. G. et al. Plant Cell 6, 1763–1774 (1994).

    Article  CAS  Google Scholar 

  10. Bechtold, N., Ellis, J. & Pelletier, G. C. R. Acad. Sci. Paris, Life Sci. 316, 1194–1199 (1993).

    CAS  Google Scholar 

  11. Celenza, J. L., Grisafi, P. L. & Fink, G. R. Genes Dev. 9, 2131–2142 (1995).

    Article  CAS  Google Scholar 

  12. Hemerly, A. S. et al. Plant Cell 5, 1711–1723 (1993).

    Article  CAS  Google Scholar 

  13. Pardee, A. B. Science 246, 603–608 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Ohtsubo, M. & Roberts, J. M. Science 259, 1908–1912 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Quelle, D. E. et al. Genes Dev. 7, 1559–1571 (1993).

    Article  CAS  Google Scholar 

  16. Resnitzky, D. & Reed, S. I. Molec. cell. Biol. 15, 3463–3469 (1995).

    Article  CAS  Google Scholar 

  17. Motokura, T. et al. Nature 350, 512–515 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Rosenberg, C. L. et al. Proc. natn. Acad. Sci. U.S.A. 88, 9638–9642 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Withers, D. A. et al. Molec. cell. Biol. 11, 4846–4853 (1991).

    Article  CAS  Google Scholar 

  20. Wang, T. C. et al. Nature 369, 669–671 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Halevy, O. et al. Science 267, 1018–1021 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Skapek, S. X., Rhee, J., Spicer, D. B. & Lassar, A. B. Science 267, 1022–1024 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Drew, M. C. New Phyt. 75, 479–490 (1975).

    Article  CAS  Google Scholar 

  24. Murashige, T. & Skoog, F. Physiol. Plant. 15, 473–497 (1962).

    Article  CAS  Google Scholar 

  25. Ausubel, F. M. et al. Current Protocols in Molecular Biology (Greene and Wiley-lnterscience, New York, 1987).

    Google Scholar 

  26. Hirayama, T., Imajuku, Y., Anai, T., Matsui, M. & Oka, A. Gene 105, 159–165 (1991).

    Article  CAS  Google Scholar 

  27. Norris, S. R., Meyer, S. E. & Callis, J. Plant molec. Biol. 21, 895–906 (1993).

    Article  CAS  Google Scholar 

  28. Drews, G. N., Bowman, J. L. & Meyerowitz, E. M. Cell 65, 991–1002 (1991).

    Article  CAS  Google Scholar 

  29. Becker, D., Kemper, E., Schell, J. & Masterson, R. Pl. Molec. Biol. 20, 1195–1197 (1992).

    Article  CAS  Google Scholar 

  30. Koncz, C. & Schell, J. Molec. gen. Genet. 204, 383–396 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doerner, P., Jørgensen, JE., You, R. et al. Control of root growth and development by cyclin expression. Nature 380, 520–523 (1996). https://doi.org/10.1038/380520a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380520a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing