Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efficient photodiodes from interpenetrating polymer networks

Abstract

THE photovoltaic effect involves the production of electrons and holes in a semiconductor device under illumination, and their subsequent collection at opposite electrodes. In many inorganic semiconductors, photon absorption produces free electrons and holes directly1. But in molecular semiconductors, absorption creates electroná¤-hole pairs (excitons) which are bound at room temperature2, so that charge collection requires their dissociation. Exciton dissociation is known to be efficient at interfaces between materials with different electron affinities and ionization potentials, where the electron is accepted by the material with larger electron affinity and the hole by the material with lower ionization potential3. A two-layer diode structure can thus be used, in which excitons generated in either layer diffuse towards the interface between the layers. However, the exciton diffusion range is typically at least a factor of 10 smaller than the optical absorption depth, thus limiting the efficiency of charge collection3. Here we show that the interpenetrating network formed from a phase-segregated mixture of two semiconducting polymers provides both the spatially distributed interfaces necessary for efficient charge photo-generation, and the means for separately collecting the electrons and holes. Devices using thin films of these polymer mixtures show promise for large-area photodetectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bube, R. H. Photoelectronic Properties of Semiconductors (Cambridge Univ. Press, 1992).

    Google Scholar 

  2. Pope, M. & Swenberg, C. E. Electronic Processes in Organic Crystals (Clarendon Press, Oxford, 1982).

    Google Scholar 

  3. Tang, C. W. Appl. Phys. Lett. 48, 183–185 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Burroughes, J. H., Jones, C. A. & Friend, R. H. Nature 335, 137–141 (1988).

    Article  ADS  Google Scholar 

  5. Burroughes, J. H. et al. Nature 347, 539–541 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Moratti, S. C. et al. SPIE proc. ser. 2144, 108–114 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Greenham, N. C., Moratti, S. C., Bradley, D. D. C., Friend, R. H. & Holmes, A. B. Nature 365, 628–630 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Braun, D. & Heeger, A. J. Appl. Phys. Lett. 58, 1982–1984 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Jones, R. A. L. Physics World 8(3), 47–51 (1995).

    Article  CAS  Google Scholar 

  10. Schlenoff, J. B., Obrzut, J. & Karasz, F. E. Phys. Rev. B40, 11822–11833 (1989).

    Article  CAS  Google Scholar 

  11. Morita, S., Zakhidov, A. A. & Yoshino, K. Solid St. Commun. 82, 249–252 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Sariciftci, N. S., Smilowitz, L., Heeger, A. J. & WudI, F. Science 258, 1474–1476 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Greenham, N. C. et al. Chem. Phys. Lett. 241, 89–96 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Halls, J. J. M., Friend, R. H. & Holmes, A. B. Syntn. Metals (in the press).

  15. Marks, R. N., Halls, J. J. M., Bradley, D. D. C., Friend, R. H. & Holmes, A. B. J. Phys. condensed Matter 6, 1379–1394 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Yu, G., Zhang, C. & Heeger, A. J. Appl. Phys. Lett. 64, 1540–1542 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Riess, W., Karg, S., Dyakonov, V., Meier, M. & Schwoerer, M. J. Lumin. 60/61, 906–911 (1994).

    Article  Google Scholar 

  18. Antoniadis, H., Hsieh, B. R., Abkowitz, M. A., Jenekhe, S. A. & Stolka, M. Syntn. Metais 82, 265–271 (1994).

    Article  Google Scholar 

  19. Borsenberger, P. M. & Weiss, D. S. Organic Photoreceptors for Imaging Systems (Dekker, New York, 1993).

    Google Scholar 

  20. Berggren, M., et al. Nature 372, 444–446 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Yang, Y. & Heeger, A. J. Nature 372, 344–346 (1994).

    Article  ADS  CAS  Google Scholar 

  22. O'Regan, B. & Grätzel, M. Nature 353, 737–740 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Schiebel, U. et al. SPIE proc. ser. 2163, 129–140 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Yu, G. & Heeger, A. J. J. appl. Phys. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halls, J., Walsh, C., Greenham, N. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995). https://doi.org/10.1038/376498a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376498a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing