Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activation of posterior gap gene expression in the Drosophila blastoderm

Abstract

THE process of body prepatterning during Drosophila blastoderm formation relies on the localized activities of zygotic segmentation genes, which are controlled by asymmetrically distributed maternal determinants1,2. The anterior determinant bicoid, a homeodomain transcription factor3,4, forms an anterior-to-posterior concentration gradient1-4. It interacts with the maternal transcription factor hunchback5 to activate the anterior zygotic patterning genes, including the central gap gene Krüppel (Kr)6. In contrast, the posterior maternal system1,2 does not provide such a decisive transcription factor, but rather prevents the repressor hunchback from acting in the posterior half so that the gap genes giant (gt) and knirps (kni) are activated by an as yet unknown transcription factor2,7. Here we show that caudal, a conserved homeodomain protein that forms a posterior-to-anterior concentration gradient8,9, and the anterior determinant bicoid cooperate to form a partly redundant activator system in the posterior region of the embryo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. St Johnston, R. D. & Nusslein-Volhard, C. Cell 68, 201–219 (1992).

    Article  CAS  Google Scholar 

  2. Pankratz, M. J. & Jäckle, H. in The Development of Drosophila melanogaster (eds Bate, M. & Martinez Arias, A.) 467–516 (CSHL, 1993).

    Google Scholar 

  3. Berleth et al. EMBO J. 7, 1749–1756 (1988).

    Article  CAS  Google Scholar 

  4. Driever, W. & Nusslein-Volhard, C. Cell 54, 83–93 (1988).

    Article  CAS  Google Scholar 

  5. Simpson-Brose, M., Treisman, J. & Desplan, C. Cell 78, 855–865 (1994).

    Article  CAS  Google Scholar 

  6. Hoch, M., Seifert, E. & Jäckle, H. EMBO J. 10, 2267–2278 (1991).

    Article  CAS  Google Scholar 

  7. Pankratz, M., Busch, M., Hoch, M., Seifert, E. & Jäckle, H. Science 255, 986–989 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Macdonald, P. & Struhl, G. Nature 324, 537–545 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Mlodzik, M. & Gehring, W. J. Cell 48, 465–478 (1987).

    Article  CAS  Google Scholar 

  10. Lehmann, R. Development 104 (Suppl.), 17–27 (1988).

    Google Scholar 

  11. Mlodzik, M. & Gehring, W. J. Development 101, 421–435 (1987).

    CAS  Google Scholar 

  12. Fronhöfer, H. G. & Nusslein-Volhard, C. Nature 324, 120–125 (1986).

    Article  ADS  Google Scholar 

  13. Dearolf, C. R., Topol, J. & Parker, C. S. Nature 341, 340–343 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Sander, K. Adv. Insect Physiol. 12, 125–238 (1976).

    Article  Google Scholar 

  15. Patel, N., Condron, B. & Zinn, K. Nature 367, 429–434 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Patel, N., Ball, E. & Goodman, C. Nature 357, 339–342 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Blumberg, B., Wright, C. V., De Robertis, E. & Cho, K. W. Science 253, 194–196 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Frumkin, A., Rangini, Z., Ben-Yehuda, A., Gruenbaum, Y. & Fainsod, A. Development 112, 207–219 (1991).

    CAS  PubMed  Google Scholar 

  19. Duprey, P. et al. Genes Dev. 2, 1647–1654 (1988).

    Article  CAS  Google Scholar 

  20. Mosquera, L., Forristall, C., Zhou, Y. & King, M. L. Development 117, 377–386 (1993).

    CAS  PubMed  Google Scholar 

  21. Evans, T. C., Crittenden, S. L., Kodoyianni, V. & Kimble, J. Cell 77, 183–194 (1994).

    Article  CAS  Google Scholar 

  22. Sommer, R. J., Retzlaff, M., Goerlich, K., Sander, K. & Tautz, D. Proc. natn. Acad. Sci. U.S.A. 89, 19782–10786 (1992).

    Article  Google Scholar 

  23. Xu, X., Xu, P.-X. & Suzuki, Y. Development 120, 277–285 (1994).

    CAS  PubMed  Google Scholar 

  24. Spradling, A. C. in Drosophila: A Practical Approach (eds Roberts, D. B.) 175–197 (IRL, Oxford, 1986).

    Google Scholar 

  25. Hou, X. S., Chou, T. B., Melnick, M. B. & Perrimon, N. Cell 81, 63–71 (1995).

    Article  CAS  Google Scholar 

  26. Pirrotta, V. in Vectors: A Survey of Molecular Cloning Vectors and their Use (eds Rodriguez, R. L. & Denhardt, D. T.) 437–453 (Butterworth, Boston, 1988).

    Book  Google Scholar 

  27. Driever, W. & Nüsslein-Volhard, C. Nature 337, 138–143 (1988).

    Article  ADS  Google Scholar 

  28. Kadonaga, J., Carner, K., Masiarsz, F. & Tjian, R. Cell 51, 1079–1090 (1987).

    Article  CAS  Google Scholar 

  29. Tullius, T. & Dombrowski, B. Proc. natn. Acad. Sci. U.S.A. 83, 5469–5473 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivera-Pomar, R., Lu, X., Perrimon, N. et al. Activation of posterior gap gene expression in the Drosophila blastoderm. Nature 376, 253–256 (1995). https://doi.org/10.1038/376253a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376253a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing