Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large third-order optical nonlinearities in transition-metal oxides

Abstract

ADVANCES in the field of optical computing1–3 will require the development of materials that combine a large nonlinear optical response with a fast response time. For many applications, this translates into a third-order nonlinear optical susceptibility, χ(3), in excess of 10−8 e.s.u., and a response time faster than lO ps (ref. 4). Although a wide range of inorganic5–18 and organic19–21 materials have been found to exhibit a large χ(3), either the response times tend to be far too slow or the materials are not sufficiently stable for device applications. Recently, the transition-metal oxide Fe2O3 was found to have a large χ(3) (ref. 22). Here we show that oxides of several other 3d transition metals show a similarly large nonlinear optical response; moreover, we find that a significant contribution to the overall χ(3) (10−8 e.s.u. in the case of V2O5) has a response time of the order of 35 ps.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eaton, D. F. Science 253, 281–287 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Kwong, S., Rakuljic, G. A. & Yariv, A. Appl. Phys. Lett. 48, 201–203 (1986).

    Article  ADS  Google Scholar 

  3. Soffer, B. H., Dunning, G. J., Owechko, Y. & Marom, E. Opt. Lett. 11, 118–120 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Nakanishi, H., Matsuda, H. & Okada, S. in Optical Functional Materials 41–105 (Soc. of Polymer Science, Japan, Kyoritsu, Tokyo, 1991).

    Google Scholar 

  5. Nasu, H., Ibara, Y. & Kubodera, K. J. non-cryst. Solids 110, 229–234 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Jain, R. K. & Lind, R. C. J. opt. Soc. Am. 73, 647–653 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Justus, B. L., Seaver, M. E., Ruller, J. A. & Campillo, A. J. Appl. Phys. Lett. 57, 1381–1383 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Hache, F., Ricard, D., Flytzanis, C. & Kreibig, U. Appl. Phys. A47, 347–357 (1988).

    Google Scholar 

  9. Fukumi, K. et al. Jap. J. appl. Phys. 30, L742–L744 (1991).

    Article  CAS  Google Scholar 

  10. Fukumi, K. et al. J. appl. Phys. 75, 3075–3080 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Kadono, K. et al. Mater. Res. Soc. Symp. Proc. 283, 903–908 (1993).

    Article  CAS  Google Scholar 

  12. Magruder, R. H. et al. Appl. Phys. Lett. 62, 1730–1732 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Akai, T. et al. J. Ceram. Soc. Jap. 101, 105–107 (1993).

    Article  CAS  Google Scholar 

  14. Magruder, R. H., Haglund, R. F. Jr, Yang, L., Wittig, J. E. & Zuhr, R. A. J. appl. Phys. 76, 708–715 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Gibbs, H. M. et al. Appl. Phys. Lett. 41, 221–222 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Glass, A. M. Opt. Engng 17, 470–479 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Günter, P. Phys. Rep. 93, 199–299 (1982).

    Article  ADS  Google Scholar 

  18. Valley, G. C. & Klein, M. B. Opt. Engng 22, 704–711 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Sauteret, C. et al. Phys. Rev. Lett. 36, 956–959 (1976).

    Article  ADS  CAS  Google Scholar 

  20. Matsumoto, S., Kubodera, K., Kurihara, T. & Kaino, T. Appl. Phys. Lett. 51, 1–2 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Jenekhe, S. A., Chen, W., Lo, S. & Flom, S. R. Appl. Phys. Lett. 57, 126–128 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Hashimoto, T., Yoko, T. & Sakka, S. J. Ceram. Soc. Jap. 101, 64–68 (1993).

    Article  CAS  Google Scholar 

  23. Ando, M., Kobayashi, T. & Haruta, M. J. chem. Soc., Faraday Trans. 90, 1011–1013 (1994).

    Article  CAS  Google Scholar 

  24. Kobayashi, T., Terasake, A., Hattori, T. & Kurokawa, K. Appl. Phys. B47, 107–125 (1988).

    Article  Google Scholar 

  25. Yuen, S. Y. & Becla, P. Opt. Lett. 8, 356–358 (1983).

    Article  ADS  CAS  Google Scholar 

  26. Wherrett, B. S. & Higgins, N. A. Proc. R. Soc. A379, 67–90 (1982).

    Article  ADS  CAS  Google Scholar 

  27. Miller, D. A. B., Seaton, C. T., Prise, M. E. & Smith, S. D. Phys. Rev. Lett. 47, 197–200 (1981).

    Article  ADS  CAS  Google Scholar 

  28. Strait, J. & Glass, A. M. J. opt. Soc. Am B3, 342–344 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Bylsma, R. B., Bridenbaugh, P. M., Olson, D. H. & Glass, A. M. Appl. Phys. Lett. 51, 889–891 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ando, M., Kadono, K., Haruta, M. et al. Large third-order optical nonlinearities in transition-metal oxides. Nature 374, 625–627 (1995). https://doi.org/10.1038/374625a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374625a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing